

Welcome to 046188 Winter semester 2012 <u>Mixed Signal Electronic Circuits</u> Instructor: Dr. M. Moyal

Lecture 12

Parallel ADCs- Time Interleaved ADC

Calibration techniques

www.gigalogchip.com

Architectures

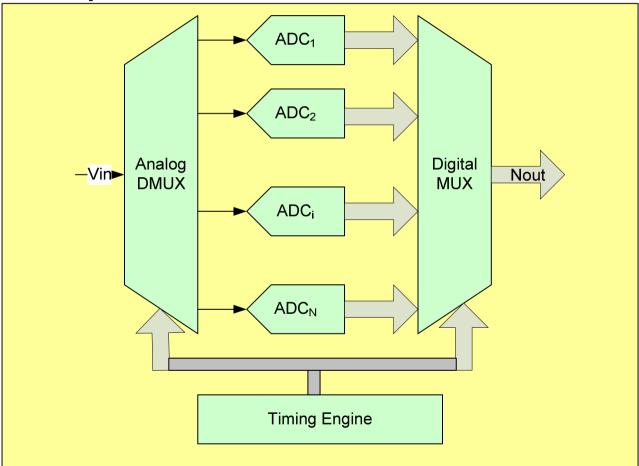
Source of Errors

Calibration Methods

Analysis

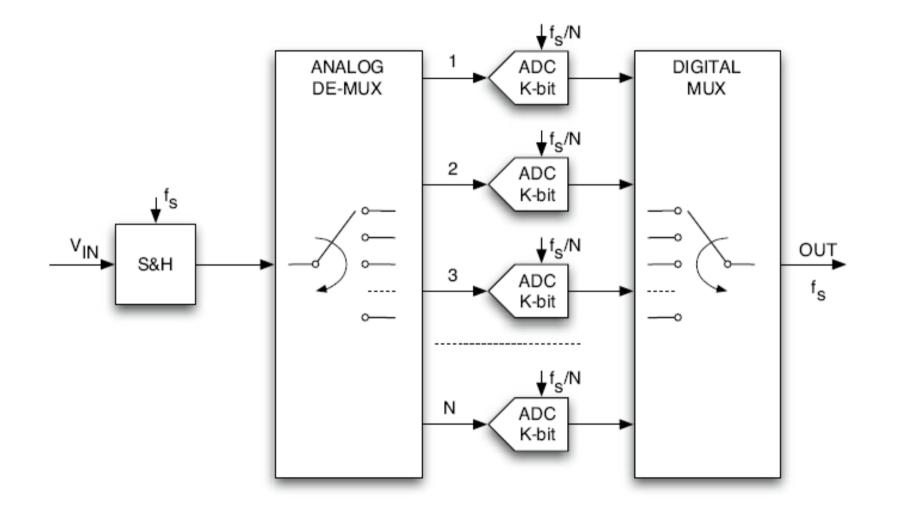
Design Example

Basics-Reason

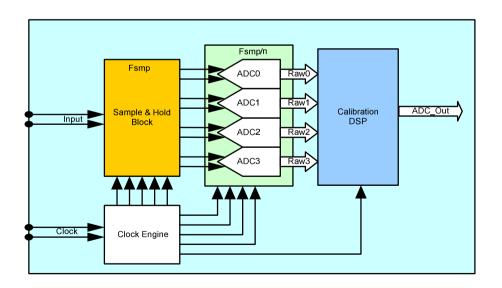


- Time Interleaved ADC Architectures
 - The concept of time interleaving
 - Mismatch Artifacts in Time Interleaved ADC
 - Time Interleaved ADC Examples
- ADC Calibration Techniques
 - The concept of ADC Calibration
 - Limitations of ADC Calibration
 - Classification of Calibration Techniques
 - Examples of ADC Calibration Techniques
 - Trimming Techniques
 - Digital Calibration in Pipeline ADC
 - Digital Calibration with State Space Error Table

1a. Time Interleaved ADC Approach (1)



• System Level Concept:


MUXING interface

- Partition the problem of building a high resolution ultrafast ADC to 3 main sub-problems:
 - Build a <u>nx time-interleaved</u> sample and hold
 - Build n identical ADC-s that each samples at <u>Fsmp/n</u>
 - Perform digital signal processing to eliminate/reduce interleaving artifacts

HOW TO CHOOSE ? -

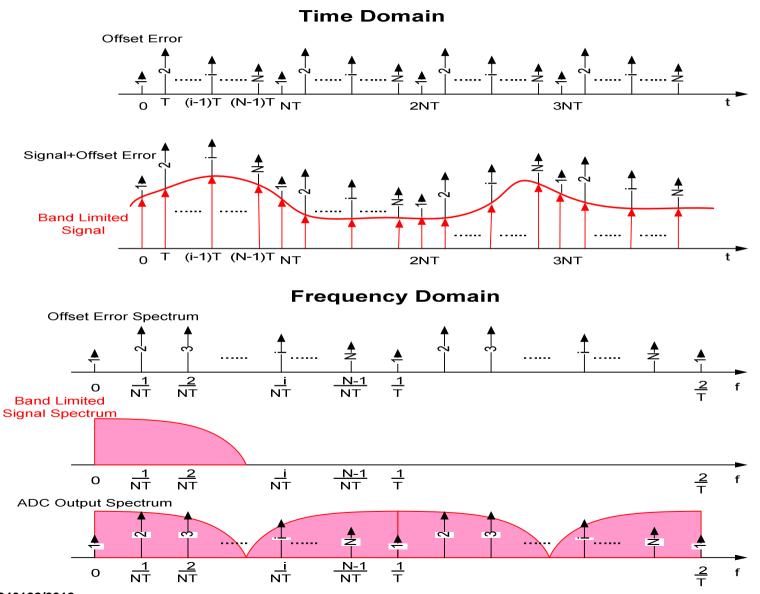
Example: in class.

SAR Interleaving ADC Backward approach:

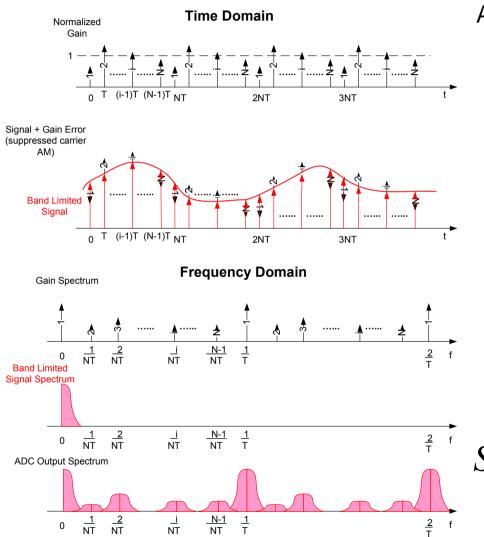
Given technology

1) design a comparator find its maximum speed- use desired power Idd- call it time: T1

- 2) Design best Digital FF (logic) : determine speed T2
- 3) Switch time to charge maximum cap MSB T3
- 3) T=T1+T2+T3 this is roughly maximum one cycle

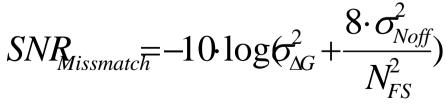

clock speed is T, need number of bit +1 Time per ADC. 2x BW needed

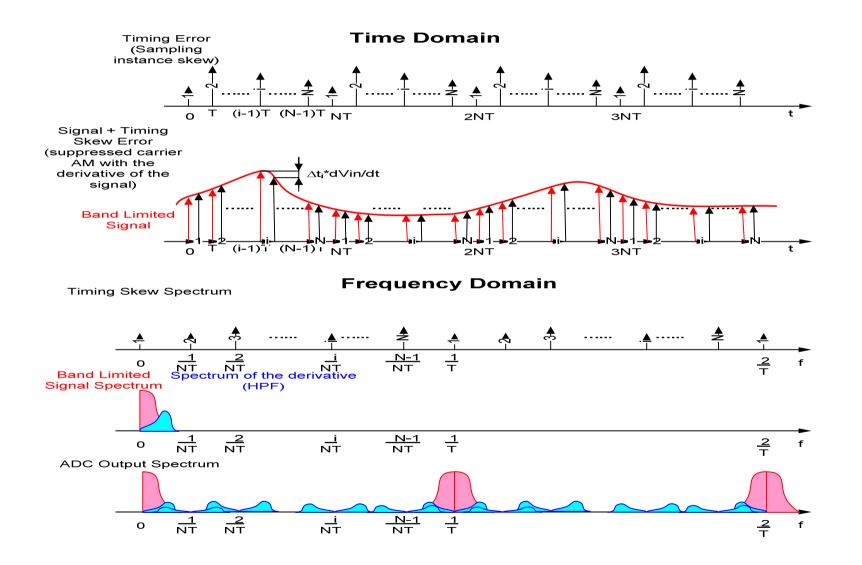
1b. Mismatch Artifacts due to Time Interleaved Architecture (1)


- The branches of a time interleaved ADC are not identical
- There are 3 main mismatch issues:
 - Offset mismatch
 - Gain mismatch
 - Timing instance skew
 - can be overcome if full speed sample and hold is used
 - Can be corrected in DSP generalization of Nyquist theorem for non-uniform sampling

1b. Mismatch Artifacts due to Time Interleaved Architecture (2 - Offset)

Technion 046188/2012


1b. Mismatch Artifacts due to Time Interleaved Architecture (3 - Gain)


Analytical Formulas:

N. Kurosawa, K. Maruyama, H. Kobayashi, H. Sugawara, K. Kobayashi , "Explicit Formula for Channel Mismatch Effects in Time-Interleaved ADC Systems", IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Volume: 48, Issue: 3, March 2001,

Pages:261 - 271

1b. Mismatch Artifacts due to Time Interleaved Architecture (4 Timing Skew)

Five Important Sources of Mismatch

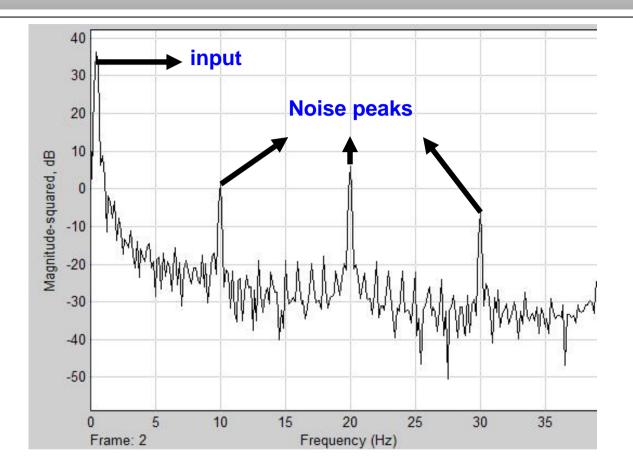
- Offset mismatch
- Gain Mismatch
- Clock Skew
 - Bandwidth Mismatch
 Make sure that BW is wide enough
 - Jitter

Use a low-jitter source

	SNR Degradation Due To			
	Offset	Gain	Clock skew	BW
Input amplitude	independent	Linearly dependent	Linearly dependent	Nonlinearly dependent
Input frequency	independent	independent	Linearly dependent	Nonlinearly dependent

in=cos(w₀t+ θ) out1=cos(w₀nT_s+ θ)+V_{os1} out2=cos(w₀nT_s+ θ)+V_{os2}

- Input amplitude and frequency independent
- Causes fixed pattern noise
- Noise peaks at frequencies, f=k*Fs/M


.....

• M=# of interleaved ADCs

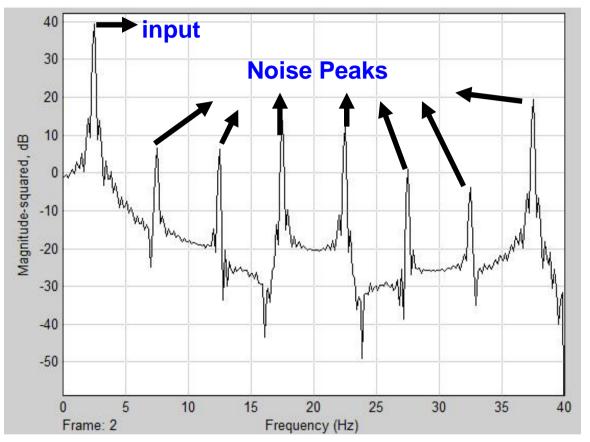
- Fs=sample frequency
- k=1, 2, 3, ... M-1
- Noise peak amplitudes are offset voltage dependent

Offset sim example... SAR ADC

Spectrum of a 4-channel interleaved ADC model

Fin=0.5Hz, Fs=40Hz

Noise peaks at 10Hz, 20Hz, 30Hz




```
in=cos(w_0 t + \theta)
out1=G1*cos(w_0 nT_s + \theta)
out2=G2*cos(w_0 nT_s + \theta)
```

- Error is max and min when the input is max and min, respectively
- Linear input amplitude dependency
- Input frequency independent
- Noise peaks at frequencies, f=±fin+k*Fs/M
 - fin=input frequency
 - M=# of interleaved ADCs
 - Fs=sample frequency
 - k=1, 2, 3, ... M-1

Gain Mismatch Problem

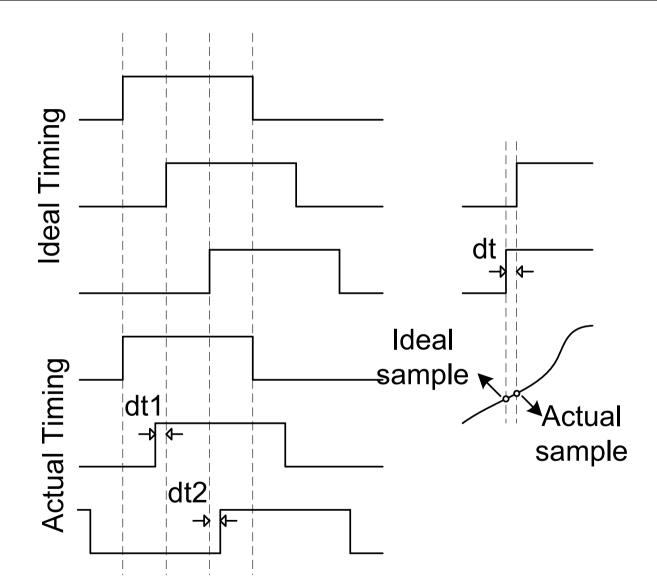
Spectrum of a 4-channel interleaved ADC mode

Fin=2.5Hz, Fs=40Hz

Noise peaks at 7.5Hz, 12.5Hz, 17.5Hz, 22.5Hz....

Timing Mismatch Problem

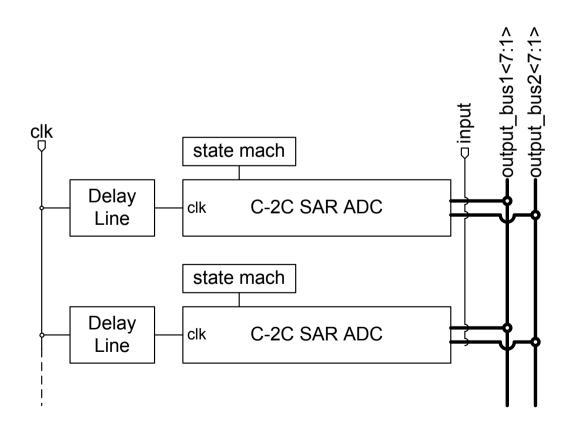
```
in=cos(w<sub>0</sub>t+\theta)
out1=cos(w<sub>0</sub>n<sub>1</sub>T<sub>s</sub>+\theta)
out2=cos(w<sub>0</sub>(n<sub>2</sub>T<sub>s</sub>+dT+\theta)
```


- Creates nonuniform sampling

.

- Error is max. when the input slope is max, thus frequency dependent
- Linear input amplitude dependency
- Noise peaks are at the same frequencies as gain offset
- Noise peaks at frequencies, f=±fin+k*Fs/M
 - fin=input frequency
 - M=# of interleaved ADCs
 - Fs=sample frequency
 - k=1, 2, 3, ... M-1

Timing Mismatch Problem



CALIBRATIONS

: Timing Calibration-1

- This has to be done, after the gain and the offset calibration
- Take the outputs of the two consecutive ADCs
- Take the difference between the samples
- Take the standard deviation of the difference after adequate number of samples are collected

- Calibration techniques can not cancel:
 - Random effects (thermal noise, jitter)
 - Quantization noise (an 8 bit ADC can not become 9 bit after calibration)
 - Fast events (spikes, metastability)

2c. Classification of ADC Calibration Techniques (1)

- By the domain of the correction:
 - Analog calibration techniques
 - Adjust reference voltages
 - Adjust components (capacitors, resistors)
 - Dynamic matching techniques
 - Digital calibration techniques
 - No adjustment is performed on the analog circuitry
 - Some analog calibration source is always needed
 - (By the nature of the problem any calibration technique is a mixed-mode circuit)

2c. Classification of ADC Calibration Techniques (2)

- By the time the correction is performed:
 - Background calibration techniques
 - Calibration circuits run in parallel and not interfering with the normal functioning of the ADC
 - Off-line calibration techniques
 - Require a specially allocated training mode
 - Offline calibration can be performed
 - At fabrication (expensive, done at testing time)
 - -At power-up
 - Periodically (but it incurs inactive times)

End Lecture 12

www.gigalogchip.com