

Welcome to 046188 Winter semester 2012 <u>Mixed Signal Electronic Circuits</u> Instructor: Dr. M. Moyal

Lecture 9 SUCCSSESIVE APROXIMATION ADC: Operation Design of Time Continuous SARs Design of Switch C SAR Error sources

EXAM DAY 23/6/09 14 pm ! Available question on project

www.gigalogchip.com

ADC Architectures

SAR ADCs

Error Sources

Common Data Acquisition Architectures

Sigma Delta

Which ADC to use and why

SAR ADC FOM History

2006 → 12b & 100Ks/s (180nm CMOS)

2008 → 9b & 40Ms/s (90nm CMOS)

Generic ADC:

V residue is a function of Vin – Vref . THE RESIDUE SETS THE SOURCE OF LINEARITY ERRORS THE COMPARATOR SET THE SOURCE OF SPEED (Offset may be a problem)

Must check always: Distortion (non linearity's) and ckt noise. Speed and Power

Successive approximation ADC

Strict timing is involved- transforming analog to digital each cycle

Comparator runs inside an open loop circuit therefore stability and closed loop Band width is not an issue.

FLOW GRAPH OF SAR ADC

SAR ADC details

SAR ADC timing look

Voltage **Catching digital signal** At this time only **Catching digital signal** At this time only $V_{j} \cong \sum_{i=1}^{N} \left(\frac{b_{i} V_{FS}}{2^{i}} \right) ; b_{1} = 1,0; b_{i} = \pm 1$ Vdac 🛉 V_{FS} • $\frac{V_{FS}}{2}$ Vin(t) 0 0 1 1 0 0 MSB LSB T_{clk} V dac Jose Silva-Martinez V(T/H)

← CYCLE 1 → ← CYCLE 2 → Time axis

SAR Operation/Design

1st step sample and hold

Covered in lecture 8

We know the errors, We know the speed needed We can proceed to build the block

2nd step the sampled voltage part is being converted to I

Next how to build Idac

Example cont, SAR Idac feed back genearaition

3rd step the lin and Idac is compared around the loop n times

Go to DAC lecture pick another type ?

We got transistors they are small

Current is always easy to generate with transistors

Lets look at other DAC in SAR approach.

Speed issues: BW amplifier, Subtraction with amplifier s/h- or track and hold. Area

Can we do it other way ? Lead to a simpler architecture No amplifiers ! ! With capacitors we can easily subtract Speed per cycle may be faster

We want to generate

Vref/2....1st clock cycleVref/2 +/- Vref/4...2nd clock cycleVref/2 +/- Vref/4 +/-Vref/83rd clock cycle.. Etc..., ,...

So lets use capacitor DAC to do this.

Charge distribution SAR DAC operation

Step 1.- clock n=1, reset everything to 0 point – "wasted state" but needed because capacitors plates are held at a "value" for DC

Vout = 0v all capcitors plates are shorted to 0 In reality after nRonC/2 time (Ron=1/ucox(vgs-vt)(w/l)

Generate Vref/2 to compare

Step 2.- clock n=2, generate vref/2 to compare with input

Vout(2T)= Vref/2

Time "3" Generate Vref/2 + Vref/4

Vout(3T)= Vref(2T) + 1/4 Vref

Vout(3T)= Vref/2+Vref/4

in time = "3" let say we want to add $-\frac{1}{4}$ vref

2 operations

Generate the minus of the input as well easily

And on.. And on.. Until the number of bits M+1

.... Let look at Charges SAR

5bit dac

Fring. caps-to improve area density..)

Accuracy in silicon is low ~ +/-20% (Low temperature/V dependency Matched well. What about plate parasitic ? Technion 046188/2012

Co= 1-2 ff/uu if Metal to Metal sand witched With Fringing effect into the picture:

Example: How low can the cap value be ?

PERFORMANCE COMPARISON.

	[1]	[5]	[6]	This work
Technology	90nm	130nm	65nm	90nm
Power supply	1V	1.2V	1.2V	IV
Power	69µW	0.92mW	1.13mW	26.3µW
Sampling rate	10.24MS/s	.50MS/s	100MS/s	10.24MS/s
Resolution	sbit	10bit	TOPIT	Sbit
ENOB	7.8bit	8.5bit	9.5bit	7.7bit
FoM	30fJ/step	.52fJ/step	15.SfJ/step	12fJ/step

Fig. 3. 0.5fF unit capacitor implementation.

Fig. 4. High-speed, low-leakage dynamic comparator.

A 12fJ/Conversion-Step 8bit 10MS/s Asynchronous SAR ADC for Low Energy Radios

Pieter Harpe, Cui Zhou, Xiaoyan Wang, Guido Dolmans, Harmke de Groot Holst Centre - IMEC, High Tech Campus 31, 5656AE Eindhoven, The Netherlands tel.: +31 40 277 4408, fax: +31 40 274 6400, pieter.harpe@imec-nl.nl

Substitut

C parasitic ~0.1-0.05C total! – how to design it out..

Silicon transistors as Capacitors

Capacitors from MOS (transistor)→be careful - watch the plates potential.

In accumulation (off)----- \rightarrow Vgs < Vt (n ch) A $C = C_{o}WL$ P can be in both Co ~ 12ff if thin oxide is used (90nm) B Cap is to the substrate (N well probably) VDD In depletion (on) ------ \rightarrow Vgs >Vt C=Cox +++ p+ || n+ n-well p-substrate **NMOS Inversion Region** Cap is to the drain sources! VAB Next to Vt – C drops to ~ 0.3 its max value It's a voltage dependent capacitor -GND doesn't work good with 0 volt across it (integrator and opamp) n+ p-substrate

Silicon transistors as Capacitors

Oh.. We got cap variable.. ? – ah.. Veractor..

ERRORS IN SAR ADCs

Its an accurate structure

Subtraction using caps Low/average power: SH, one comparator, DAC, and Logic

8b-200msps is possible

But: Need Accuracy in the DAC. Comparator offset < ~ 0.5 LSB – <u>Easily calibrated</u>

ACCURACY : FUNCTION OF DAC (CAPACITORS) MATCHING

MATCHING

$$C \approx \varepsilon \frac{WL}{t} \longrightarrow \left(\frac{\Delta C}{C}\right)^2 = \left(\frac{\Delta \varepsilon_r}{\varepsilon_r}\right)^2 + \left(\frac{\Delta t_{ox}}{t_{ox}}\right)^2 + \left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta W}{W}\right)^2$$

Once again can correlate to area with good accuracy How is it given

1. A_deltaC/C is based on sigma of (deltaC / C)vs. 1/sqrt(WL) typ. number 2fF/micron square

To get to the best matched number you need to :

- Use identical geometries
- Use large unity capacitance (minimize fringing)
- Use common centroid arrangement
- Use dummy capacitors
- Use shielding
- Account for the connections' contribution
- Don't run connections over capacitor
- Place capacitor in low stress areas
- Place capacitors far from power devices

Find the LSB capacitor size (and total capacitors) for a 12b SAR ADC Given that 10ff unit match to 0.8%. (to 1 sigma)

$$C_{mit} = 10\%, \quad \begin{pmatrix} e_{\pm} \\ e_{\pm} \end{pmatrix}_{wit} = 0.8\%$$

$$\Delta_{maise} = \sqrt{\frac{a^{2}}{12}} + \left[\text{Distortions} \right]^{2} + \frac{167}{C_{F}} \qquad 1pF \sim 64e-6V/sqrtHz$$

$$d_{ef} = iv \in \left[\text{Distortions} \right]^{2} + \frac{167}{C_{F}} \qquad 1gF \sim 64e-6V/sqrtHz$$

$$\left[\frac{A_{e}}{2} \right]_{E_{F}} = i \left[\frac{1}{2} \left(\frac{1}{2^{n} - 1} \right) \right] = 0.0081\%$$

$$LSB \text{ can be a Lot worksT, its scale}$$

$$by \quad f_{A} = -\frac{1}{\sqrt{2}}$$

$$\left[\frac{C_{O}}{2} \right]_{LSB} = \left[0.0381 \right] \cdot \sqrt{2^{n} - 1} = 0.518\%$$

$$C_{LSB} = \left[Canit \right] \cdot \left[\frac{0.8}{0.518} \right]^{2} = 23.85 \text{ ff}$$

$$C_{TOTAL} = 97.67 \text{ ff}$$

$$hoT To influency the curvater. !$$

$$C_{LSB} = \begin{bmatrix} C_{uniT} \end{bmatrix} \cdot \begin{bmatrix} \begin{pmatrix} SC \\ C \end{pmatrix}_{F.Scale} & \sqrt{2^{n}} \end{bmatrix}^{Z}$$

$$(\begin{pmatrix} SC \\ C \end{pmatrix}_{gainT} \end{pmatrix}^{Z}$$

Technion 046188/2012

Example of matching requirement on F. Scale (MSBs)

2 to the n x 2/3 (2/3 only as example not to give all the error to the linearity)

Design Examples:

References issues:

REFERENCE HOLDING BREF IS HARD TO DO:

During switching phase references has to settle every clock (fast) They are op amp driven therefore make the design almost as op-amp based

Also the comparator must settle every cycle. (faster)

Most time absolute value can move =+/-15% to +/-20%and does not significantly matter but ratio's do

However, the bigger the area the better the matching Typical values 30ff can match 3-sigma to better ~ 0.5% Matching is area dependent generally by the root of (W x L)

In SAR there is contradiction large is good for matching however speed is degraded a lot R switch x C and its multiplied N bit for a complete cycle.

POWER/Analog componets

Without amplifiers power is set by S/H, References, 1 comparator, and digital blocks+clocks

Generally for lower number of bits – logic may be significant Area. For many bits analog set the power waist.

Logic running multiple times for each conversion and capacitor size (forcing a large drive current)

Power waist : S/H + Comparator + Refes+switching/logic

Good: Lowest possible power- FOM Fewer analog elements, T/H or S/H drive low capacitance

The Feed Back ADC (SAR) offers significant hardware savings compared to flash ADCs because the coarse quantizer (comparator) resolution m can be much smaller then the converter resolution. N

However, its suffer from drawbacks making it not suitable for many applications because: It requires p = N/m passes to generate N bit output words limiting the through put It requires N; bit accurate DAC

It requires faster settling elements

but No need amplifiers !

So if speed is a problem should we combine SARs in time ??

End Lecture 9

www.gigalogchip.com

Technion 046188/2012