

Welcome to 7718 semester 1 2022 <u>Mixed Signal Electronic Circuits</u>

Instructor: Dr. Miki Moyal

Lecture 08

DIGITAL TO ANALOG CONVERTERS

- 1. Transfer Function
- 2. Mismatches in layout
- 3. Architectures Types and Examples

$$\sigma^{2}(I_{D}) = \frac{\beta^{2}}{2}(V_{GS} - V_{T})^{2} * \sigma^{2}(\Delta V_{T}) + I_{D}^{2} * \sigma^{2}(\frac{\Delta L}{L})$$

Mismatch in MOS Current Sources

- Example
 - W=500 μ m, L=0.2 μ m, g_m/I_D=10S/A, A_{Vt}=5mV- μ m, A_β=1%- μ m

$$\sigma_{\underline{\Delta I}}_{\underline{I_1}} = \sqrt{\left(10\frac{S}{A} \cdot \frac{5mV}{10}\right)^2 + \left(\frac{1\%}{10}\right)^2} = \sqrt{\left(0.5\%\right)^2 + \left(0.1\%\right)^2} = 0.51\%$$

אוניברסיטת **TELAVIV** עווע**ERSITY** דולאביב 7718-Lect 08

Agenda

Transfer Function DAC architectures DAC Example Calibrations

Transfer Function

Equation (Binary weighted DAC)

Example

A 4 bit DAC having n=4 bits will have 4 digital inputs from 0000 to 1111. (0-15)

Vout (Fscale) = Vref(1/16) x [B0 x1 + B1 x (2) + B2 x (4) + B3 x (8)]. = 15/16 x Vref

Can also be called "multiplying dac"

B's is a digital code, it is assumed a 0 value or a 1 value (digital codes)

Vref is a reference set by design to control the output range (supply range is the limitation, ~Vdd-0.6)

The minimum step is assume when B0=1 all other B's are 0! Is the Least significant bit (LSB).

Transfer Function (TF)

A n bit DAC will have the following expression n is the resolution

Bo – is the lsb digital control Bn-1 – is the MSB digital control We set Vref, limited by process maximum range Semester / 1

January 12, 2023

Ideal TF plot

Output = Digital Code x Vref (analog) Multiplication of analog value by Digital Fraction Fraction multiplication is done using Matched resistors, Current, or Capacitors

Frequency domain

Source : analog Integrated Elect 2000

January 12, 2023

DAC output Frequency domain – sine wave response

8

ISinx/xI mean what !

Example:

If fin lies at 1/4 fs ! (fs=1MHz and fin=250KHz)

Pi x ³/₄ = 135 deg.

Sin(135) / 3.14x3/4 = 0.707/2.355=0.3

January 12, 2023

Type of mis-matches

a) No error b) Gradient c) Random d) Single point

Horizontal/Vertical

Shufle design

horizontal unit placement

Horizontal/Vertical unit placement

January 12, 2023

Shuffle unit placement

Min-max=~0.25lsb

January 12, 2023

dummies

<u> </u>				
10	12	9	11	
2	4	1	3	
14	16	13	15	
6	8	5	7	
{				

Keep background of edge unit identical Some goes to the extreem of 2 rows

January 12, 2023

DACs Architectures

Voltage mode: R Ladder and R-String DAC The Basic R-2R DAC R and I DAC C DAC Current (steering) DAC

Resistor-String DAC- basics

Voltage mode: R Ladder and R-String DAC

Voltage mode: R Ladder and R-String DAC- Equations

R string - Easy to implement in CMOS, "large" die size (In use up 8-10b) A switch and resistor, digital selection, decoding, can be done with switch tree.

Multiple R-String allow increase in resolution (<u>keeping monotonic</u>) With only doubling the R string. (Holloway 84) Need only 2N+1 resistors not 2 to the power of N.

Speed is limited by amplifier input capacitance switch resistance and opamp BW Op1 op2, and op3 offset is a draw back

THE BASIC R-2R DAC

R-2R DAC

Willy Sansen 10-05 2013

Motivation: lower area, 12b=25 resistors

No guaranteed monotonic, bad offset sensitivity

Operation- unipolar output:

msb I(a6=H)= -Vref/2R only a6 goes H I(a5=H)= -Vref/4R Isb I(a0=H)= -Vref/128R only a0=H I total = -Vref/R – Vref/128R all switches to out=H

Bipolar output possible with an extra amplifier and the use of Vmid

R-2R key issues

Very common architecture if thin film resistors are used (Cecil 74) Area efficient- Easy to increase resolution R-2R per bit Monotonic is not granted INL and DNL are closely coupled **Relatively Slow**

"rule of thumb" : Matching requirement for the n th bit in the i th bit

 $\Delta R < \frac{R}{2^{n-i}}$

1) Switch resistance, Vgs voltage changes will effect mismatches

2) Problem: Output impedance changes and get multiplied by amplifier offset Looking from the other side (opamp side) R looking back form the amplifier vary with code.

can we Fix the impedance issue

R-2R and I

Architectures for Nyquist High-Speed D/A converters:

· R-2R ladder:

- Area is reduced compared with resistor string
- Simple design: equal resistor R-2R blocks, switches and current sources
- · Fixed output impedance
- · Accuracy is limited by matching of resistors and current sources
- · Poor power efficiency

Source: R V Plasshe

Current DAC

Willy Sansen 10-05 2015

Limit: Thermal/1/f Noise of Idac, opamp (gmin), and Rf. Speed: Fast-- as opamp unity gain Band width.

I dac with reference

Iref is generated using op Vout is only a function of code and Vref

Additonal objective (for future technology generations): Low operating voltage 1.8 V

Number	Sign +	Twos	Offset	Ones
	Magnitude	Complement	Binary	Complement
+7	0111	0111	1111	0111
+6	$0\ 1\ 1\ 0$	0110	$1\ 1\ 1\ 0$	0110
+5	$0\ 1\ 0\ 1$	0101	$1\ 1\ 0\ 1$	$0\ 1\ 0\ 1$
+4	0100	0100	$1\ 1\ 0\ 0$	0100
+3	$0\ 0\ 1\ 1$	0011	$1 \ 0 \ 1 \ 1$	0011
+2	0010	0010	$1 \ 0 \ 1 \ 0$	0010
+1	0001	0001	$1 \ 0 \ 0 \ 1$	0001
+0	0000	0000	$1 \ 0 \ 0 \ 0$	0000
$^{-0}$	1000	(0 0 0 0)	$(1 \ 0 \ 0 \ 0)$	1111
-1	$1 \ 0 \ 0 \ 1$	74.11	0111	1110
-2	$1 \ 0 \ 1 \ 0$	1110	0110	1101
-3	1011	1101	0101	1100
-4	1100	1100	0100	1011
-5	1101	1011	$0\ 0\ 1\ 1$	1010
-6	1110	1010	$0\ 0\ 1\ 0$	1001
-7	1111	$1 \ 0 \ 0 \ 1$	$0\ 0\ 0\ 1$	1000
$^{-8}$		1000	0000	

Glitch control Coding schemes..:

Good around +/-0

•Offset Binary. Obtained starting to encode from the most negative number.

•Sign Magnitude. The MSB represents the sign, the others the absolute value.

• 1's Complement. Negative numbers are obtained complementing positive numbers.

• 2's Complement. Obtained from the offset binary complementing the MSB;

negative numbers equal to 1's complement plus one.

Lect 06

DAC Differential Architecture

DAC with ..- sign magnitude..

LSB Implementation

- 64 units
- Sign input is for current direction
- CK is to latch the data
- Example:
- if $\mathbf{In} = 0$, Vout=0

DAC Layout

- Hand layout to allow "shielding" of analog from digital
- Iout lines are in the middle
- Digital on the outside
- Area: $Core < 0.6 \text{ mm}^2$ (total <1)

Measured Results

Transmitter Harmonic

WITHOUT DYNAMIC AVERAGING

2rd Harmonic at - 87dB 3nd Harmonic at - 78dB 5th Harmonic at - 87dB

Output is valid only part of the time (switched) may need Hold switch Marching of capacitors set the INL / DNL

Limit: Noise KT/C, glitches Speed: Fast-- as Ron of switch, vref settling, and and C/2 n time constant.

Could be non Monotonic- in transitions Simple decoder

> "best" for speed => lout time constant

- 001 00000001
- 010 00000011
- 011 000000111 always one change
- 100 000001111

Source: B. Murmann Stanford

Binary Vs. Thermometer - mismatch

FOR THE SAME AREA INL – THE SAME DNL – BIG DIFFERENE Figure out the optimum place: how many binary bits and how many segmented bit

DAC Response

Glitches and INL in Binary dac

If the glitches scale with code (and capacitance is linear) - Linearity is good

Combined I dac - segmented

- Binary weighted section with B_b bits
- Thermometer sectior with B_t = B-B_b bits
- Typically $B_t \sim 4...8$
- Reasonably small encoder
- Easier to achieve monotonicity

Source: B. Murmann Stanford

Current (steering) DAC- removed opamp

Source : G. Gielen, K.U.L Leuven

2 option of DAC arrangements

Current source implementation

STATIC PERFORMANCE In Current-Steering D/A Converters

DNL in binary D/A converters:

Worst case DNL for the midcode transition (MSB):

$$\sigma^{2}(\Delta I) = \sigma^{2} \left(2^{N-1} i_{0} - \left(2^{N-1} - 1 \right) i_{0} \right) = \left(2^{N} - 1 \right) \sigma^{2}(i_{0}) \Rightarrow$$
$$DNL^{\max} = \frac{\sigma(\Delta I)}{i_{0}} = \sqrt{2^{N} - 1} \frac{\sigma(i_{0})}{i_{0}} \text{ in LSB units}$$

DNL in thermometric D/A converters:

DNL limited by the LSB a single i_{θ} source is connoted or disconnected from adjacent code to code transitions:

 $DNL^{\max} = \frac{\sigma(\Delta I)}{i_0} = \frac{\sigma(i_0)}{i_0}$ in LSB units

DNL < 0.5 LSB is guaranteed for as much as a 50% precision in the i_0 sources

High-Speed CMOS D/A Converters, May 2002

Comparison

	Thermometer	Segmented	Binary Weighted
σ _{INL} (worst)	$\cong \frac{1}{2}\sigma_u \sqrt{2^B}$		
σ _{DNL} (worst)	$\cong \sigma_u$	$\cong \sigma_u \sqrt{2^{B_b+1}-1}$	$\cong \sigma_u \sqrt{2^B - 1}$
Number of Switched Elements	2 ^B – 1	$B_b + 2^{B_t} - l$	В

Source: B. Murmann Stanford

Differential I/2I mode DAC TYPES

Binary Weighted

Use twice the current on the bottom But only n ch switches

Very Fast

Compact N latches (but need to be sized up) Linearity limited by MSB DNL spikes: in some code transitions

Thermometer

Current source matching relaxed Each stage is LSB equivalent in contribution For N bit, 2 to power of N latches, unit cells, wires Silicon area is large, depend on marching and routing Power supply grounding is important I deal: Can combine with Binary approach and leave some MSB as Segmented

DAC with reduced Rout effect and filter

Fix the output impedance variations And add the « out of ban » noise reduction filter

Pre driver

LATCH AND SWITCH Minimization of glitches

- · Non symmetrical crossing point: reduces current source drain spike
- Reduced clock swing: sets on-voltage for cascoding bias and reduces clock feed-through

L. Sumanen, et al, "A 10-bit High-Speed Low-Power CMOS D/A Converter in 0.2mm2", Proc. of ICECS, 1998

High-Speed CMOS D/A Converters, May 2002

Dac to output path

Fillter to reduce out of band noise Set poles to alfa above maximum BW

Lect 06

Calibration Methods

Make all I the same
Add error I
Dynamic Averaging

Calibration Method 1

Calibration Method 1

End lecture 08