Welcome to
7718 semester 12022
Mixed Signal Electronic Circuits
Instructor: Dr. Miki Moyal

אוֹניברסיטת TEL AVIV אור
תלאביב UNIVERSITY

Lecture 08
 DIGITAL TO ANALOG CONVERTERS

1. Transfer Function
2. Mismatches in layout
3. Architectures Types and Examples

$$
\sigma^{2}\left(I_{D}\right)=\frac{\beta^{2}}{2}\left(V_{G S}-V_{T}\right)^{2} * \sigma^{2}\left(\Delta V_{T}\right)+I_{D}^{2} * \sigma^{2}\left(\frac{\Delta L}{L}\right)
$$

Mismatch in MOS Current Sources

$$
\Delta I=I_{1}-I_{2} \cong-g_{m} \Delta V_{t}+I_{1} \frac{\Delta \beta}{\beta}
$$

$$
\frac{\Delta I}{I_{1}} \cong-\frac{g_{m}}{I_{1}} \Delta V_{t}+\frac{\Delta \beta}{\beta}
$$

$$
\sigma_{\Delta V_{t}}=\frac{A_{V_{t}}}{\sqrt{W L}} \quad \sigma_{\frac{\Delta \beta}{\beta}}=\frac{A_{\beta}}{\sqrt{W L}}
$$

- Example
- $W=500 \mu \mathrm{~m}, \mathrm{~L}=0.2 \mu \mathrm{~m}, \mathrm{~g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}=10 \mathrm{~S} / \mathrm{A}, A_{\mathrm{Vt}}=5 \mathrm{mV}-\mu \mathrm{m}, A_{\beta}=1 \%-\mu \mathrm{m}$

$$
\sigma_{\frac{\Delta I}{I_{1}}}=\sqrt{\left(10 \frac{S}{A} \cdot \frac{5 m V}{10}\right)^{2}+\left(\frac{1 \%}{10}\right)^{2}}=\sqrt{(0.5 \%)^{2}+(0.1 \%)^{2}}=0.51 \%
$$

Agenda

Transfer Function
DAC architectures
DAC Example
Calibrations

Transfer Function

Equation (Binary weighted DAC)

Example
A 4 bit DAC having $n=4$ bits will have 4 digital inputs from 0000 to 1111. (0-15)
Vout (Fscale) $=\operatorname{Vref}(1 / 16) \times[B 0 \times 1+B 1 \times(2)+B 2 x(4)+B 3 x(8)] .=15 / 16 x$ Vref

Can also be called "multiplying dac"

B's is a digital code, it is assumed a 0 value or a 1 value (digital codes)
Vref is a reference set by design to control the output range (supply range is the limitation, $\sim \mathrm{Vdd}-0.6$)

The minimum step is assume when $\mathrm{B} 0=1$ all other B 's are 0 ! Is the Least significant bit (LSB).

Transfer Function (TF)
A n bit DAC will have the following expression n is the resolution

$$
\begin{aligned}
& \text { n bit converter (} D A S \text {) } \\
& \text { Vent }=\left[B_{0} \cdot 2^{0}+B_{1} 2^{1}+B_{2} 2^{2}+\cdots \cdot B_{n-1} 2^{n-1}\right] \cdot \alpha \\
& \alpha=\frac{V_{R E F}}{2^{n}} \text {, or } \frac{V_{F S}}{2^{n}} \text {. } \\
& V_{\text {out }}=\sum_{m=0}^{n-1}\left[B_{m} q^{m}\right] \cdot \frac{V_{R \in f}}{2^{n}} \\
& B_{m} \Rightarrow A R E \operatorname{coD} E S, \phi \text { on } 1 \\
& \text { Bo - is the Iss digital control } \\
& \text { Bn-1 - is the MSB digital control } \\
& \text { We set ref, limited by process maximum range }
\end{aligned}
$$

Ideal TF plot

Output = Digital Code x Vref (analog)
Multiplication of analog value by Digital Fraction
Fraction multiplication is done using Matched resistors, Current, or Capacitors

Frequency domain

Source : analog Integrated Elect 2000

DAC output Frequency domain - sine wave response No analog filter

Amplitude

|Sinx/xI mean what!

Example:
If fin lies at $1 / 4 \mathrm{fs}!\quad(\mathrm{fs}=1 \mathrm{MHz}$ and fin= $\mathbf{~} \mathbf{~} 250 \mathrm{KHz}$)
Pix $3 / 4=135$ deg.
$\operatorname{Sin}(135) / 3.14 \times 3 / 4=0.707 / 2.355=0.3$

January 12, 2023

Semester / 1

Type of mis-matches

a) No error b) Gradient c) Random d) Single point

Thermometer unit placement architecture: Gradient affect

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Horizontal

$\sqrt{$| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |,$~}$

Horizontal/Vertical

Shufle design

horizontal unit placement

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

DNL

Min-max=large..
INL

Horizontal/Vertical unit placement

DNL

Min-max=~0.27Isb
INL

Shuffle unit placement

10	12	9	11
2	4	1	3
14	16	13	15
6	8	5	7

Min-max $=\sim 0.251 s b$
DNL

INL

dummies

10	12	9	11
2	4	1	3
14	16	13	15
6	8	5	7

Keep background of edge unit identical Some goes to the extreem of 2 rows

DACs Architectures

Voltage mode: R Ladder and R-String DAC The Basic R-2R DAC
R and I DAC
C DAC
Current (steering) DAC

Resistor-String DAC- basics

Resistor-String DAC- basics decoder build in

Voltage mode: R Ladder and R-String DAC

Coarse

Voltage mode: R Ladder and R-String DAC- Equations

\mathbf{R} string - Easy to implement in CMOS, "large" die size (In use up 8-10b) A switch and resistor, digital selection, decoding, can be done with switch tree.

Multiple R-String allow increase in resolution (keeping monotonic)
With only doubling the R string. (Holloway 84)
Need only $2 \mathrm{~N}+1$ resistors not 2 to the power of N .

Speed is limited by amplifier input capacitance switch resistance and opamp BW Op1 op2, and op3 offset is a draw back

THE BASIC R-2R DAC

R-2R DAC

Smaller area in Resistors !

Willy Sansen 10-05 2013
Motivation: lower area, $12 b=25$ resistors
No guaranteed monotonic, bad offset sensitivity

Operation- unipolar output:

```
msb I(a6=H)= -Vref/2R only a6 goes H
    I(a5=H)= -Vref/4R
Isb I(a0=H)= -Vref/128R only a0=H
I total = -Vref/R - Vref/128R all switches to out=H
```

Bipolar output possible with an extra amplifier and the use of Vmid

$R-2 R$ key issues

Very common architecture if thin film resistors are used (Cecil 74)
Area efficient- Easy to increase resolution $R-2 R$ per bit
Monotonic is not granted
INL and DNL are closely coupled
Relatively Slow
"rule of thumb" : Matching requirement for the nth bit in the i th bit

1) Switch resistance, Vgs voltage changes will effect mismatches

2) Problem: Output impedance changes and get multiplied by amplifier offset Looking from the other side (opamp side) R looking back form the amplifier vary with code.
can we Fix the impedance issue

$R-2 R$ and I

Architectures for Nyquist High-Speed D/A converters:

- R-2R ladder:
- Area is reduced compared with resistor string
- Simple design: equal resistor R-2R blocks, switches and current sources
- Fixed output impedance
- Accuracy is limited by matching of resistors and current sources
- Poor power efficiency

Source: R V Plasshe

Current DAC

4-bit Current steering DAC

Glitches !

Willy Sansen 10-05 2015
Limit: Thermal/1/f Noise of Idac, opamp (gmin), and Rf. Speed: Fast-- as opamp unity gain Band width.

I dac with reference

Iref is generated using op
Vout is only a function of code and Vref
Additonal objective (for future technology generations): Low operating voltage 1.8 V

Glitch control Coding schemes..:

Number	$\begin{gathered} \text { Sign + } \\ \text { Magnitude } \end{gathered}$	Twos Complement	Offset Binary	Ones Complement
+7	0111	0111	1111	0111
+6	0110	0110	1110	0110
+5	0101	0101	1101	0101
+4	0100	0100	1100	0100
+3	0011	0011	1011	0011
+2	0010	0010	1010	0010
+1	0001	0001	1001	0001
+0	0000	0000	1000	0000
-0	$100{ }^{\text {² }}$	(0000)	$\left(\begin{array}{llll}1 & 0 & 0\end{array}\right)$	1111
-1	1001	N11	0111	1110
-2	1010	1110	0110	1101
-3	1011	1101	-1 01	1100
-4	1100	1100	0100	1011
-5	1101	1011	0011	1010
-6	1110	1010	0010	1001
-7	1111	1001	0001	1000
-8		1000	0000	

Good around +/-0
-Offset Binary. Obtained starting to encode from the most negative number.
-Sign Magnitude. The MSB represents the sign, the others the absolute value.

- 1's Complement. Negative numbers are obtained complementing positive numbers.
- 2's Complement. Obtained from the offset binary complementing the MSB;
negative numbers equal to 1 's complement plus one.

DAC Differential Architecture

DAC with ..- sign magnitude..

LSB Implementation

- 64 units
- Sign input is for current direction
- CK is to latch the data
- Example:
- if $\mathbf{I n}=0$, Vout=0

DAC Layout

- Hand layout to allow "shielding" of analog from digital
- Iout lines are in the middle
- Digital on the outside
- Area: Core $<0.6 \mathrm{~mm}^{2} \quad($ total $<1)$

Measured Results

Transmitter Harmonic

WITHOUT DYNAMIC

 AVERAGING2rd Harmonic at -87 dB 3nd Harmonic at -78 dB 5th Harmonic at -87 dB

C DAC

Output is valid only part of the time (switched) may need Hold switch Marching of capacitors set the INL / DNL

Limit: Noise KT/C, glitches
Speed: Fast-- as Ron of switch, vref settling, and and C/2 n time constant.

I dac - binary

Could be non Monotonic- in transitions
Simple decoder

I dac - thermometer

Binary Vs. Thermometer - mismatch

Matlab 1000 simulations
FOR THE SAME AREA
INL - THE SAME DNL - BIG DIFFERENE
Figure out the optimum place: how many binary bits and how many segmented bit

DAC Response

Inaccuracy/offset

Glitches and INL in Binary dac

If the glitches scale with code (and capacitance is linear) - Linearity is good

Combined I dac - segmented

- Binary weighted section with B_{b} bits
- Thermometer sectior with $B_{t}=B-B_{b}$ bits
- Typically $\mathrm{B}_{\mathrm{t}} \sim 4$... 8
- Reasonably small encoder
- Easier to achieve monotonicity

Source: B. Murmann Stanford

Current (steering) DAC- removed opamp

Source : G. Gielen, K.U.L Leuven

2 option of DAC arrangements

Segmented DAC INL DNL

$$
\sigma_{I N L} \approx \sqrt{2^{N-2}} \cdot \sigma_{I}<0.5 \cdot L S B
$$

$$
\sigma_{D N L} \approx \sqrt{2^{N-T}} \cdot \sigma_{I}<0.5 \cdot L S B
$$

Current source implementation

STATIC PERFORMANCE

In Current-Steering D/A Converters

DNL in binary D/A converters:

Worst case DNL for the midcode transition (MSB):

$$
\begin{aligned}
& \sigma^{2}(\Delta I)=\sigma^{2}\left(2^{N-1} i_{0}-\left(2^{N-1}-1\right) i_{0}\right)=\left(2^{N}-1\right) \sigma^{2}\left(i_{0}\right) \Rightarrow \\
& D N L^{\max }=\frac{\sigma(\Delta I)}{i_{0}}=\sqrt{2^{N}-1} \frac{\sigma\left(i_{0}\right)}{i_{0}} \text { in LSB units }
\end{aligned}
$$

DNL in thermometric D/A converters:
DNL limited by the LSB a single i_{0} source is connoted or disconnected from adjacent code to code transitions:

$$
D N L^{\max }=\frac{\sigma(\Delta I)}{i_{0}}=\frac{\sigma\left(i_{0}\right)}{i_{0}} \text { in LSB units }
$$

$\mathrm{DNL}<0.5 \mathrm{LSB}$ is guaranteed for as much as a 50% precision in the i_{0} sources

Comparison

Source: B. Murmann Stanford

Differential I/2I mode DAC TYPES

Binary Weighted

Use twice the current on the bottom
But only n ch switches

Very Fast
Compact N latches (but need to be sized up)
Linearity limited by MSB
DNL spikes: in some code transitions

Thermometer

Current source matching relaxed
Each stage is LSB equivalent in contribution
For N bit, 2 to power of N latches, unit cells, wires
Silicon area is large, depend on marching and routing
Power supply grounding is important
I deal: Can combine with Binary approach and leave some MSB as Segmented

DAC with reduced Rout effect and filter

Fix the output impedance variations And add the « out of ban » noise reduction filter

Pre driver

LATCH AND SWITCH

Minimization of glitches

- Non symmetrical crossing point: reduces current source drain spike
- Reduced clock swing: sets on-voltage for cascoding bias and reduces clock feed-through

L. Sumanen, et al, "A 10-bit High-Speed Low-Power CMOS D/A Converter in $0.2 \mathrm{~mm}^{2 "}$. Proc. of /CECS, 1998

Dac to output path

8bit thermometer
6bit binary

Fillter to reduce out of band noise Set poles to alfa above maximum BW

Calibration Methods

1)Make all I the same
2)Add error I
3)Dynamic Averaging

Calibration Method 1

Calibration Method 1

End lecture 08

