Welcome to
7718 semester 12022
Mixed Signal Electronic Circuits
Instructor: Dr. Miki Moyal
000
אוֹנוברסיטת תור

Lecture 06

ADC Types
FLASH ADC

Covered Transistor Basics sampling \qquad

$$
\sigma\left(\Delta V_{T}\right)=\frac{C_{1}}{\sqrt{W_{e f f} \times L_{e f f}}}
$$

\qquad
=====================
=====================
So Now lets have more fun: look at real blocks work.. ADCs/DACs, etc..
And their relations to transistor ICs.

```
====================
=====================
```

Lect 04

ADC Architectures - on going lectures

Flash ADCs

Flash - Design and Error Sources

\square Flash ADC - This lecture.
\square Two Steps (Sub Ranging) ADC - if time allow.

Other ADC's
\square SAR ADC

- Pipelined ADC
\square Over Sampling ADC
Folding/Interpolating ADC
\square Algorithmic ADC
\square Combined Parallel ADC

The ENOB: General trends

Green - Flash
Red - Pipe Line
Blue - Folding
Pink - Open Loop Pipe line
Sigma delta ADC ?
(0-200MHz, 9-14bit)

Basic split

] Architecture suited for very high input frequency (less bits)

- Flash ADC
- Folding ADC
- Open Loop Pipe Line - can still have many bits
- Time interleaved ADC
- Architecture for high precision (more bits)
- Flash Sub Ranging ADC
- SARADC
- Sigma Delta ADC
- Pipeline ADC
- Time interleaved ADC

Basic Split

Architecture suited for very high input frequency (less bits)

- Flash ADC
- Folding ADC
- Open Loop Pipe Line - can still have many bits
- Time interleaved ADC
- Architecture for high precision (more bits)
- Flash Sub Ranging ADC
- SARADC
- Sigma Delta ADC
- Pipeline ADC
- Time interleaved ADC

Rest of the slides will address only the FLASH ADC (and its types)

Basic flash ADC

"Classic Mixed Signal"

\square Monotonic increasing: no missing codes due to R
\square Comparator is the main element.

What's a Comparator- done on prev. lectures.
\square It's a chain of gain stages (unlike op amp) to achieve fast response

FLASH continue: Operation equation

FLASH continue: number of comparator needed

\square Suited for up to 7-8 bits of resolution

- 127-255 Comparators
- Flash speed
\square As the comparator, logic, and input impedance driving the comparators.
- Output is like a thermometer

Example Bottom-to-Top

 111111111111 maximum input..
000000001111 000000000111 000000000011 000000000001 000000000000

Input passed LSB, no input

Total number of Comparators required is $2^{N}-1$, where N is the resolution of the ADC
8 bit 257 lines 00000000000000000000000 ..

FLASH - detail each element

- Comparator Offset
- Resistor Mismatches
- Power
\square Speed limit first stage
- Signal Feed Through
- Gain

D Dynamic Range - Max $\mathrm{V}_{\text {ref }}$
Comparator Meta Stability (and speed)

- Following stages - (bubbles)
- Clock distribution
. A good way to see the errors is to go over the flash design

Task: Need to build: 8 bits Flash ADC
\square Assuming:
\square Process $0.18 \mathrm{um} / 1.8 \mathrm{~V}$

- $\mathrm{C}_{0 \mathrm{x}} \sim 6 \mathrm{ff} / \mathrm{u}^{2}$,
- $\mathrm{K}_{\mathrm{p}}=20 \mathrm{e}-6$
- $\mathrm{K}_{\mathrm{n}}=60 \mathrm{e}-6$

$$
K_{n}=\mu C o x
$$

We can control the rest: sizes, we are the artists..

Step1: Choose an Architecture - our task

FLASH - Architecture

Step 2:
 Design the Converter:
 \square (W/L) with Correct Accuracy:

Find/look for:
\square Accuracy:
\square where in the design Non Linearity is created
\square Comparator offsets - Random mechanism
\square Resistor ladder - Random

Design Example

- Comparator Offset:
\square Find W/L of the Comparator

Offset - at which $\mathrm{V}_{\text {os }}$ the comparator switch without "effecting" Isb

Comparator offset

Given process 180nm
$\square \mathrm{C}_{1}$ is:

$$
C 1=5(m V / \mu)
$$

We use the equation from prev.

$$
\sigma(\Delta V t)=C 1 / \sqrt{\text { Weff } \quad * \text { Leff }}
$$

But, now we need 3 Sigma's - so "no" error is created - yield

$$
\operatorname{Vos} \leq 3 \bullet \sigma(\Delta V t) \quad \text { oopsss.. now yield is important...3.. }
$$

Remember:
Could be the biggest problem: bad for low voltage technologies

Comparator Offset Calculations cont.

$$
\begin{aligned}
& \text { Vos }(\max)=1 / 2 \bullet L S B \\
& V o s=3 \bullet C 1 / \sqrt{\text { Weff } * \text { Leff }} \\
& V F s=1 V \quad V l s b=1 / 255=3.92 m V \\
& C 1=5(m V / \mu) \rightarrow \text { Process given } \\
& \sqrt{\text { Weff } * \text { Leff }}=5 m v /(1 / 2(V f s / 255)=3 \bullet(10 \mathrm{mv} / 3.92 \mathrm{mv}) \\
& \text { Weff } \bullet \text { Leff }=58.52 \\
& \square \text { Implies } \begin{array}{l}
L=0.18 u \quad W=325 u n
\end{array} \\
& \begin{array}{l}
\text { We assumed comp input stage was all..but got feeling how big can } \\
\text { things be... }
\end{array}
\end{aligned}
$$

Ladder Mismatches - Length Determinations

Silicon Resistors

$R_{p} \sim 90 \%-99 \%$ of $R \quad$ Saliside is removed $=2$
$R_{n c} \sim$ Exposed Area to Saliside $\sim 5 \frac{\Omega}{v}$
$R_{c} \sim$ Contact Resistor to Metal $\sim 1-20 \frac{\Omega}{C T}$
R Matching

$$
G\left(\frac{\Delta \boldsymbol{k}}{\boldsymbol{R}}\right)=\sqrt{\left(\frac{A_{R p}}{\sqrt{\boldsymbol{W} \times \mathbf{L}}}\right)^{2}+\left(\frac{A_{R n c}}{\sqrt{\boldsymbol{W}_{n c} \times \boldsymbol{L}_{n c}}}\right)^{2}+\left(\frac{A_{n c}}{\sqrt{\text { Contact Area }}}\right)^{2}}
$$

Need $1 / 2$ LSB $=0.196 \%$

Example:

- Ignore all but poly resistance (see next slide), and
\square If $\frac{\Delta R}{R}=2 \%$ ($1 \mathrm{um} \times 1 \mathrm{um}$) - Process given
\square Take 3 sigma's $=1 u \times 1 u \rightarrow 6 \%$.
$\Delta R<\frac{R}{2^{n-1}} \cdot 0.5 \gg$ Need $\frac{\Delta R}{R}$ of $1 / 2 L S B=0.196 \%(100 / 510)$
$\frac{0.06}{\sqrt{\text { Area }}}=0.00196 \gg$ Area $=937 \mu^{2} \gg$ use $1 \times 937 \mu m$
Generally: matching possible up to 10-11bit

Get Rid of Contact Errors

Avoid Contacts - Matched Resistors

But must be a long stripe

Step 3. Power Dissipation

Power - An Estimation

Power (due to comparators $I_{\text {in }}$)

$$
\rho=V_{O D} \times I_{\text {comp }}=V_{O D} \times 2 \times k \frac{W}{2 L}\left(V_{G S}-V_{T}\right)^{2}\left[2^{n}-1\right]
$$

For:
$K_{n}=60 E-6$,
$L=0.18 \mu$
$W=325 \mu$
and if $V_{G S}-V_{T}=0.1$
$I_{D S}=\mu C_{o x}\left(\frac{W}{2 L}\right)\left(V_{G S}-V_{T}\right)^{2} \times 255=541 \mu A \times 255=138 m A \quad$ big assumption
$P=$ Without T / H, logic, clock, resistor ladder we re at 248 mW

\square Should we increase L? (keep WxL, drop Power?)
\square Should we check real speed to get I?
\square Should we calibrate offset and not increase W/L?

Stop and re think:
Isn't power based on I,
shouldn't we look at speed first? For min I

And we didn't even start talking about thermal noises..etc..

We have R we have comp $g m(I$ and $w / l) \ldots$
So should be **easy to check..**
If in fs/2 we don't generate >1/2LSB..(from 4KTR, and 8/3KT/gm

What's the catch ? do all comp contribute ?

Step 4. meet speed limits

Speed Limit due to Front Stage - A Model

$1 s^{t} t i d e n t i f y$ region of operation vds~0

$$
I_{d s}=\mu C_{o x}\left(\frac{W}{L}\right)\left[\left(V_{g s}-V_{t h}\right) \cdot V_{d s}-\frac{1}{2} V_{d s}^{2} \quad V_{g s}-V_{t h}>V_{d s}\right.
$$

Speed Limit due to Front Stage - Acquisition Time

Plug into $[1] \gg 1-\frac{1}{2\left(2^{n}-1\right)}=1-e^{-t / R C}$

$$
I f \frac{1}{\left(2^{n}-1\right)} \approx \frac{1}{2^{n}} \gg \quad t=R C \cdot \ln 2 \cdot(n+1)
$$

$$
t=0.693 R C \cdot(n+1)
$$

or
8bits >> RC•ln(255•2)
need 6.23 RC's

n [bits]	\# of RC's
4	3.46
8	6.23
10	7.62

Speed limit due to front stage - calculation
$C_{o x}=6 f f / \mu^{2} \quad R=50 \Omega$ (an Assumption)
$\boldsymbol{W} / \boldsymbol{L}=\frac{\mathbf{3 2 5}}{\mathbf{0 . 1 8}} \quad$ From offset calculations $\quad W / L=325 / 0.18$
$\boldsymbol{C}_{\boldsymbol{T}}=\frac{\mathbf{2}}{\mathbf{3}} \boldsymbol{C}_{\boldsymbol{o x}} \cdot \mathbf{2 5 5}+\boldsymbol{C}_{\text {Routing }} \quad$ Assume all in Saturation (Too optimistic)
$C_{T}=6 \mathrm{ff} \times 325 \times 0.18 \times 255$
$\boldsymbol{C}_{\boldsymbol{T}}=59.7 \boldsymbol{p F} \quad$ Disappointing low frequency
$t(8 \mathrm{bits})=6.23 \mathrm{RC}=18.6 \mathrm{~ns} \gg 53.7 \mathrm{MHz}$

Stop and re think:

- New buffer to drive low cap?
- Re-look at matching - calibrate to reduce C_{T} ?

Speed limit due to Front Stage - View

53.7 MHz

But when is min to full scale Happen?

Quick summary prev. lecture

Problem with Cin-speed-.. Area..- but

53.7 MHz

Do we FFT the red? Disaster...

$$
\begin{gathered}
\square \text { If } \frac{\Delta R}{R}=2 \%(1 \mathrm{um} \times 1 \mathrm{um})-\text { Process given } \\
\square \text { Take } 3 \text { sigma's }=1 \mathrm{u} \times 1 \mathrm{u} \rightarrow 6 \% \\
\frac{\Delta R<\frac{R}{2^{n-1}} \cdot 0.5 \gg \text { Need } \frac{\Delta R}{R} \text { of } 1 / 2 L S B=0.196 \%(100 / 510)}{\frac{0.06}{\sqrt{\text { Area }}}=0.00196 \gg \text { Area }=937 \mu^{2} \gg \text { use } 1 \times 937 \mu m}
\end{gathered}
$$

$$
\Delta R<\frac{R}{2^{n-1}} \cdot 0.5
$$

Lect 04

Speed Limit: feed through speed

Signal Feed Through

Who is in Sat?
Who is in Off? Who is in Lin?

$$
\begin{aligned}
& C_{g s}=2 / 3 C_{o x} \\
& C_{g s}=C_{o v}, C_{o x} \text { to Bulk }=C_{o x} \\
& C_{g s}=1 / 2 C_{o x}
\end{aligned}
$$

Worst Case Mid Ladder R/2, $\frac{\boldsymbol{C}_{1} \cdot C_{2}}{\boldsymbol{C}_{1}+\boldsymbol{C}_{2}} \approx \frac{1}{2} C_{g s}$

IF \quad| Sat | Off | Lin | $1 / 3$ |
| :--- | :--- | :--- | :--- |$\quad 1 / 3 \quad \tau=R C=\left(\frac{R}{2}\right)\left[\frac{2}{3} C_{\text {ox }} \frac{n}{3}+\frac{1}{2} C_{o x} \frac{n}{3}\right]$

$\frac{\boldsymbol{V}_{\text {mid }}}{\boldsymbol{V}_{\text {in }}}=\frac{\boldsymbol{\pi}}{\mathbf{4}} \cdot \boldsymbol{f}_{\text {in }} \cdot \boldsymbol{R}_{\text {ladder }} \cdot \boldsymbol{C}$

Source : Esscirc 2002. Leuven

C total capacitance
Find max input ladder R. for no effect on feed through
(After matching calculations are satisified).教

An Example - reduce/removed feed through effect

Example: Cap stabilization 5b 1GS.s flash Source: Esscirc 2006 Helsinki univ, Olli Viitala

Step 5. Spec of the needed comparator

Comparator Gain - More in Comparator Design

2. After gain we need to also look at speed response

Need minimum of 300 mV Before the invertor trips
3. Let's creat a Latch on Positive Gain

More details in comparator design

More on Distortions - Variable BW - Flash Specific

capacitors	Saturation	Linear	Off
C gate to S	$2 / 3 \operatorname{Cox}+\mathrm{Cov}$	$1 / 2 \operatorname{Cox}+\mathrm{Cov}$	Cov
C gate to D	Cov	$1 / 2 \mathrm{Cox}+\mathrm{Cov}$	Cov
C gate to B	0	0	$\mathrm{Cox} / / \mathrm{Ccb}+.$.

$$
H D_{2}=\frac{V_{o} \omega C_{1} R}{2 \sqrt{1+\left(2 \omega C_{0} R\right)^{2}}}
$$

[^0]
Step 6. Set the Maximum Dynamic Range

Dynamic Range - Max Vref

Full Scale Possible

- Limit the Ladder Full Scale
- Limit the SNR
- Or - 2 Comparator Type

Step 7. Clock - Jitter Requirement Set Requirements

Flash Clock Distribution Errors

Step 8. Digital design - can we help the analog ? What can we do there..

Error Correction

 7718-Lect 06

Bubble error look at your neighbour Won't correct two errors

Design Check - Are We Satisfy? Lets look at the FOM value.

Definition 2.
$F O M=\frac{P}{2^{E N O B} \times 2 \times E R B W} \quad$ Energy over Decision $=\frac{\text { Power }}{\text { SamplingRate } \cdot 2^{\text {Nbit }}} \longrightarrow$ Last lect

$$
(F O M=17 \text { is high } \rightarrow \quad 248 \mathrm{mw} /(57 \mathrm{e} 6 \times 255)=17 \mathrm{e}-12
$$

(248 from $138 \times \mathrm{VCC}$.

Since nothing works well..
How about other architectures?

Question...
\square Why does this circuit reduces capacitance of T/H and help drive the large capacitance of the ADC ?

continue

FLASH ADC ARCHITECTURE
ALTERNATIVES- **2 Step**

ALTERNATIVE DESIGNS OF FLASH ADC

Errors: Meta stability- quick re-look.
Differential Architecture

Charge Flash architecture

Meta stability

Ref.: IEEE JSSC, vol. 31, pp. 1132-1140, Aug. 1996, 7-b $80-\mathrm{MHz}$ flash ADC
Metastability error: occurs in ADCs when undefined comparator outputs pass
through the encoder to the converter output bits.

Differential Designs

Differential /improved implementation FLASH architecture

Differential Design
Capacitive Charge FLASH

DIFFERENTIAL-details

$$
\begin{aligned}
& \text { * FLUNT FROM B O } \\
& \text { * USE Mid poimt }
\end{aligned}
$$

$$
\text { * } 2 x \text { siqnac, kontiy } \text {, ale for 3-4bits }
$$

DIFFERENTIAL

INL GOES TO 0 In the middle
Signal is doubled routing is harder
Simple to make differential comparator

CAPACITIVE CHARGE FLAH

Architecture Alternative: Capacitive Charge ADC

Can we use an inverter as simple gain stage Use capacitors to transfer Vin-Vref x gain.

Why?
Inverter is a digital cell no special process needs It draw 0 DC current (power) very fast and simple, power is lower..
the reason...(Offset cancellation is build in)!
simpler comparator

Example: Create the ladder codes.

Source: Fairchild Data sheet

Operation- Inverter chain- as gain stage

Insert the second level - Subtraction and gain

$\mathrm{v} 0=\mathrm{vi}$ the inv. is for sure in
Saturation and in low gain/impedance

Insert the second level-Subtraction and gain

Speed

Speed Estimation:

6 bit ADC, no S/H
At L min130 nm (Cox ~13ff/uu) can get to 1-2 GHz - Flash "only"

Example:
Input Delay= 150ps (5.5/2piRCin + RladderCgs/2 to drive 63 comp/calibrate) +250 ps comparator +100 ps logic (25ps/gate) $=500 \mathrm{ps}$ max
Possibly latch after comp and save some of the 100ps. (50ps)

Sample at 2.0 GHz max through put (Input frequency)
twice the min delay $\sim 1 \mathrm{GHz}$

```
FLASH ADC- SUMMARY
Bad-Good
Monotonic
Very fast, No amplifiers, Resistors can match well to 10b
Design:
Big input capacitance
Comparator offset is an issue
Clocking routing sampling time
Meta stability
Decoding to avoid bubbles
If S/H is used - Distortion added
Hardware:
Exponential in complexity
High in power for }7\mathrm{ bits or more ( }127\mathrm{ comparators)
Could lead to large die size
References may need to be filtered from kick back
Medium: to scale down in technology }->\mathrm{ power supply!
Power ~ 2 to N
Area ~2 to N
Cin ~2 to N
R ladder ~ 2 to N
Here N is an increase of effective resolution
```

Since Flash silicon Area and Power grows exponentially How about different architecture

Sub-ranging ADCs

ADC Architecture Options: Sub-ranging (2-Step) ADCs

4-Bit Flash Vs. 4-Bit Two-Step ADC

Two-step: subranging ADC

$+2\left(2^{\mathrm{N} / 2}-1\right)$ comparators Coarse bank selects which part of reference ladder to connect to fine bank

- Speed limited by settling of fine references
parasitic capacitance from $>2^{\mathrm{N}}$ switches + large kickback

Source: BRCM
Lost time- Need twice the time and S / H.
Resistor get glitches now impedance is important
New many switches (2 to the $\mathrm{N}-\mathrm{M}$ Coarse connection)

Sub ranging ADC FOM History

$2006 \rightarrow 6 \mathrm{~b} \& 1 \mathrm{Gs} / \mathrm{s}(90 \mathrm{~nm}$ CMOS)
$2007 \rightarrow 10 \mathrm{~b} \& 160 \mathrm{Ms} / \mathrm{s}$ (90 nm CMOS)
$2008 \rightarrow 5 \mathrm{~b}$ \& $1.75 \mathrm{Gs} / \mathrm{s}$ (90 nm CMOS)

Operation details : how to reduce number of comparators

Sub-Ranging ADC Basics

Conversion is done in two steps - coarse ADC determines the region of the ladder the fine ADC will use

- regions can overlap to produce the redundancy that relaxes the offset requirement for the coarse ADC
- for the fine ADC - strict offset requirements

Fine is waiting for the Coarse (MSBs) - need S/H How to partition? 10 bit can use 31 comparators for Coarse and 32 for fine $=63$ instead of 1024
Or 63 for coarse (6 bit) and 15 for fine ?

Summary: : Sub-ranging ADCs

- Power efficient
- Two low resolution ADCs operating in a pipeline manner
- Reduced speed
- Throughput can be still very high
- T\&H is inevitable
- The most critical component in the architecture
- Loading is relaxed
- Residue generation
- Needs M+N bit accuracy
- Interleaving is possible
- State of FOM is around $0.5 \mathrm{pJ} /$ conv

SH Versus clocked flash

SH will draw 20-40\% more power

Flash architecture with digital corrections 1GHz/6 bits

Avantages:
Remove sample and hold - make clocking harder
Use comparators as sample and hold
Use pre gain comparator - Option
Error correction logic
ROM Grey encoder
Now task is on the clock to be accurate to all comparators

Offset Cancellation/reduction

Select 71 for maximum offset possible

Alternative offset cancellation

Easy to do in start up.

Figure 2: Architecture of offs et cancel circuit.

We can go wild with good ideas:
Find offset connect comparator to different point on the ladder

Add small DAC to each comparator find trip point (Feed back)- last foil.

Remember the offset in digital code and offset the digital information

Offset Calibrating Comparator Array for 1.2-V, 6-bit, 4-Gsample/s Flash ADCs using 0.13-um generic CMOS technology

Hiroyuki Okada, Yasuyuki Hashimoto,
Kohji Sakata, Toshiro Tsukada, Koichiro Ishibashi

END lect 06

[^0]: Source : Esscirc 2002 Leuven

