Welcome to
046188 Winter semester 2012
Mixed Signal Electronic Circuits Instructor: Dr. M. Moyal

Lecture 5a

Cont. Mismatches in Mixed Signal Circuits

Mismatches in CMOS devices.

Summary lect. 2-4

Eq. and definitions
$S N R=\frac{\text { Signal Power }}{\text { Total Noise Power }}$
$S N D R=\frac{\text { Signal Power }}{\text { Noise and Distortion Power }}$
$E N O B=\frac{\operatorname{SNDR}(d B)-1.76 d B}{6.02 d B}$
$S F D R=\frac{\text { Signal Power }}{\text { Largest Spurious Power }}$
$T H D=\frac{\text { Total Distortion Power }}{\text { Signal Power }}$

$$
\begin{aligned}
& V_{\text {noise }}^{2}=4 \cdot k \cdot T \cdot R \cdot \Delta f \quad \text { Noise in a resistor } \\
& V_{i n_{-} n o i s e}^{2}=\frac{(2 / 3) \bullet 4 \cdot k \cdot T \cdot \gamma}{g_{m}} \cdot \Delta f \\
& V_{i n_{-} n o i s e}^{2}=\frac{K o \bullet \cdot k \cdot T}{W \bullet L \bullet f} \cdot \Delta f \\
& R=\frac{L}{W} R_{\square}=\frac{L}{W} \cdot \frac{\bar{\rho}}{x_{j}} \\
& \mathrm{C}=\frac{\varepsilon_{0} \varepsilon_{\mathrm{r}}}{\mathrm{t}_{\mathrm{ox}}} \mathrm{WL} \quad \mathrm{C}=\mathrm{Ca} \times \text { Area }=\mathrm{Ca} \times \mathrm{W} \times \mathrm{L}
\end{aligned}
$$

MISMATCHES

One of the most critical parameters in Mixes signal design.

Mostly ignored with normal simulators

Mismatches- modelling-"Pelgrom rule"

MISMATCHING

In Current-Steerina D/A Converters

Matching Properties of MOS Transistors
o equal

MARCEL J. M. PELGROM, MEMBER, IEEE, AAD C. J. DUINMAIJER,

MISMATCHES IN TRANSISTORS

First test:
Is it a current source mode?
Is it a voltage mode device?
Is it a switch?

Mixed signal design must address:
Can we ignore/neglect the error?
If not can we "calibrate" or fix the errors ?

Mismatches- Vth.

Process deviation: threshold voltage is highly process dependent:
Vth=VFB - Qss/Cox + Vsub +2|Фp| + |Qd|/Cox
where:
VFB- flat band voltage,
Qss - surface charge per unit area,
Vsub - substrate voltage,
$2|\Phi p|$ - voltage required for strong inversion, doping gradients
Qd - depletion charge per unit area in the depletion region
Cox - oxide capacitance per um2, depends on oxide thickness
All of them except Vsub are process dependent and randomly or graded distributed

Layout mismatch: Voltage drop on along power line can cause graded error

Mismatches- History

First belief was based on measured data :
Very L dependent and Very W dependent

Low L Vt. goes down - so variations is large Low W Vt. goes up - so variation is large

W,L
Today Pelgrom law define most mismatches as function of area WxL

$$
\sigma\left(\Delta V_{T}\right)=\frac{C_{1}}{\sqrt{W_{\text {eff }} \times L_{e f f}}}
$$

Note on C1

C 1 is in today design $\sim 2-10 \mathrm{mV}$ for $\quad \mathrm{W} \times \mathrm{L}=1(\mathrm{u} \times \mathrm{u})$
C1 has strong dependency on manufacturing - we do not have much control
C1 follow ~ 1.5 tox (in nm-> mv) as a "rule of thumb" - use thin oxide devices
C1 can be different for different layouts - we have control

Example for C 1.

~ 3nm Tox --_ 90nm process $\sim 4.5 \mathrm{mv}$ x um
0.18um process tox $=4 \mathrm{~nm} \sim 6 \mathrm{mv}$ x um
3.3v process, tox $\sim 7 \mathrm{~nm} \sim 10 \mathrm{mv} x$ um

V Mismatches- Saturation

$$
\sigma^{2}\left(I_{D}\right)=\frac{\beta^{2}}{2}\left(V_{G S}-V_{T}\right)^{2} * \sigma^{2}\left(\Delta V_{T}\right)+I_{D}^{2} * \sigma^{2}\left(\frac{\Delta L}{L}\right)
$$

$$
\beta=\mu \cdot C_{o x} \cdot \frac{W}{L}
$$

"never mind" this.. Create a design model

$$
\begin{aligned}
& I=k \frac{\omega}{2 L}\left(V_{65}-V_{T}\right)^{2}=\alpha\left(V_{65}-V_{T}\right)^{2} \\
& \Delta I+I=k \frac{w}{2 L}\left(V_{6 S}+\Delta V-V_{T}\right)^{2}=\alpha\left(V_{65}-b V-V_{T}\right)^{2} \\
& \Delta I=\alpha\left[\left(V_{6 S}-\Delta V-V_{T}\right)^{2}-\left(V_{G S}-V_{T}\right)^{2}\right] \\
& =\alpha\left[\left(V_{6 s}-V_{T}\right)^{2}+\Delta v^{2}+2\left(V_{6 s}-V_{T}\right) s^{v}-\left(V_{6 s}-V_{T}\right)^{2}\right] \\
& \Delta I \approx \alpha \mathcal{L}\left(V_{6 S}-V_{T}\right) \\
& \frac{\Delta I}{I}=\frac{\alpha \cdot 2\left(V_{6 s}-V_{T}\right) b}{\alpha\left(V_{6 s}-V_{T}\right)^{2}}=\frac{2}{V_{6 s}-V_{T}} \cdot \Delta V=\left[\frac{2}{V_{6 s}-V_{2}}\right] \frac{G\left(V_{T}\right)}{\sqrt{W \times L}} \\
& \left(\frac{\Delta I}{I}\right)^{2}=\left[\frac{C_{1}}{\sqrt{\omega_{x L}}}\right]^{2} \frac{4}{\left(V_{6 s}-V_{T}\right)^{2}} \quad \text { ohe way. } \\
& \frac{\sigma^{2}\left(I_{D}\right)}{I_{o}^{2}}=\left\{\frac{\beta}{I_{D}} \sigma^{2}\left(\Delta V_{T}\right)+\sigma^{2}\left(\frac{\Delta L}{L}\right)\right\}=\left\{\frac{2}{\left(V_{G S}-V_{T}\right)^{2}} \sigma^{2}\left(\Delta V_{T}\right)+\sigma^{2}\left(\frac{\Delta L}{L}\right)\right\}
\end{aligned}
$$

I Mismatches- Saturation- second method

$$
\begin{aligned}
& \frac{\Delta I}{I}=\frac{g_{m} \cdot \Delta V}{I}=\frac{\sqrt{2 k \frac{w}{L} \cdot I}}{I} \Delta V \\
& =\frac{\left(2 k \frac{\omega}{L}\right)}{\sqrt{I}} \cdot \Delta V=\sqrt{2 k \frac{\omega}{L}} \sqrt{k \frac{\omega}{2 L}\left(V_{6 s}-V_{T}\right)} \cdot \Delta V=\frac{2}{V_{6 s}-V_{\uparrow}} \Delta V \\
& \frac{\Delta I}{I}=\frac{2}{V_{G S}-V_{T}} \cdot \frac{C_{1}}{\sqrt{\omega \times L}} \quad \text { Second way. } \\
& \angle A R G E
\end{aligned}
$$

AMplifiers comparatons minimize oflset (MIsmaíches)

curren Soyrces minimre I offset, mismatch.

$$
\begin{aligned}
& \Delta I=g_{M} \cdot \Delta V=\frac{g_{M} c_{1}}{\sqrt{w x L}}=\frac{\sqrt{\left(\frac{k_{2}}{L} 2 I\right)}}{\sqrt{w \times L}} c_{1} \\
& \Delta I=\frac{c \sqrt{2 I \mu_{0} b_{x}}}{L} \sim \frac{1}{L} \quad \begin{array}{c}
\angle A R G E R \\
L
\end{array}
\end{aligned}
$$

Example: Mismatches/offset

$4 x$ transistor area $=1 / 2$ offset improvement

Calculate the Matching

$$
\sigma_{\mathrm{VT}}=\frac{\mathbf{A}_{\mathrm{VT}}}{\sqrt{\mathbf{W L}}} \quad \mathbf{A}_{\mathrm{VT}}=\mathbf{1 0} \mathrm{mV} \mathrm{~V}_{\mu \mathrm{m}}
$$

END lecture 5a

