

Welcome to
046188 Winter semester 2013
Mixed Signal Electronic Circuits
Instructor: Dr. M. Moyal Room: Meyer 351

Lecture 01

1. Course Overview and Requirements

2. Review of CMOS Transistors Basics

You can always find lectures in
www.gigalogchip.com and at the university site.

I will add interesting papers discussions etc..

What will you get out of this course

1. Mixed Signal design - almost all emphasis on Conversion from Digital to Analog and Analog to Digital domains this time - I will add PLLs
2. Basic to detail of Analog circuit (transistor level) design of selected Analog blocks

Understanding of problem flavors and solution/s to mixed signal design

Course lectures

Lecture 1: Overview - Analog Transistors Basics Lecture 2: ADCs- Basic Theory and Definitions, Jitter Lecture 3: Mismatches and noises in Mixed signal IC circuits.
Lecture 4: DAC Architectures
Lecture 5: Over sampling Techniques in DACs
Lecture 6: ADC- Flash Architectures
Lecture 7: SAR ADC and Circuit Design of Comparator for ADCs
Lecture 8: High Speed: Pipe lines Just on line lecture.
Lecture 9: Circuit Design of Sample and Hold
Lecture 10: Over Sampling ADCs : Sigma Delta - Loops and Architectures
Lecture 11: Sigma delta Switch capacitors ADCs
Lecture 12: Sigma delta design examples
Lecture 13: Advance topics: PLL Basics or Time interleaved architecture
Lecture 14: PLL design fundamentals

Home » TextBooks "046* »046188 - Mixed Signal Electronic Circuits
046188 - Mixed Signal Electronic Circuits

046188
Mixed Signal Electronic Circuits
מעגלים אלקטרוניים לאותות מעורבים

1. Plassche, Rudy J. van de. CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters. $2^{\text {nd }}$ ed. Kluwer Academic Publishers, 2003. s.n. 2279785.
2. Oversampling Delta-Sigma Data Converters: Theory, Design, and Simulation. Edited by Candy, James C., Temes, Gabor, C. IEEE Press, 1992. s.n. 2117420.
3. Delta-Sigma Data Converters: Theory, Design, and Simulation. IEEE Press, 1997. s.n. 2192320
4. Laker, K. R., Sansen, Willy M. C. Design of Analog Integrated Circuits and Systems. McGraw-Hill, 1994. S.n. 2319855

Perquisite:
Knowledge in Linear Circuits design and Feedbacks systems.
Book Listing: The link below lists the recommended textbooks for your course in the upcoming academic year.
http://libee.technion.ac.il/apage/49599.php

1) CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters by Rudy van de Plassche, $2^{\text {nd }}$ Edition 2003 Kluwer Academic Publishers
2) Oversampling Delta-Sigma Data Converters Theory Design and Simulations. James C. Candy and Gabor C. Temes, 1992 IEEE press Order num. PC0274-1

Book Listing - Option

Design of Analog Integrated Circuits and Systems, Kenner R. Laker and Willy M.C. Sansen, 1994 McGraw-Hill Series in Electrical and Computer Engineering

Recommended Supplemental Material:

IEEE Journal of Solid State Circuits and ISSCC from 1990-2013, and Lecture's notes.

Delta-Sigma Data Converters

Grading/Site

Course Grading:

Project:	80%
Homework(lab) + Lab	20%

Project Delivery will include 20 min presentation of your work"oral" exam/presentation

Class Hours:

Room 768 is available for office hrs.
Thursdays. 09:30-11:30., 10 min break.
E-mail: miki@gigalogchip.com
The lectures will go on our web site. And the university one
Look at: www.gigalogchip.com
For info on class, class lectures, notes, project papers, etc..

Requirements: Project

I will choose few projects ideas for you to work on. You may, under special case bring your idea but it will need to be approved by me.

Area Topics Area Suggestions:
Design of : ADC: (Sigma Delta, Flash, SAR,PLL)
I will define "spec" : Bits/frequency/Process/voltage range/Power
..and in LAB: Per Danniel \rightarrow Design a DAC.

Project Detail: Choose A to E

You will deliver: (detail on a separate doc)
a) Paper Search: What exists today - at least 3 paper listing.
b) Architecture Analysis (can be Matlab/AnaLib sim.) - show that it works
c) Mismatch Analysis add imperfections ---show that it works.
d) Circuit Simulation/design: Transistor Simulation one block contain transistors
A) 5 bits $1 \mathrm{GS} / \mathrm{s}$ FLASH ADC $\quad \rightarrow$ ENOBS=4.4bit
B) 12 Bits $2 \mathrm{MS} / \mathrm{s}$ Sigma Delta ADC \rightarrow ENOB $=11$ bit
C) 6 bit $8 G S / s$ Interleaving ADC $\quad \rightarrow$ ENOB=4.8bit
D) 12 bits $1 \mathrm{MS} / \mathrm{s}$ SAR ADC $\quad \rightarrow$ ENOB=11bit
E) 4 GHz PLL $\quad \mathrm{bw}=2 \mathrm{MHz}$ refin $=25 \mathrm{MHz}$

Sim vco phase noise
Propose all elements of filter and phase detector and charge pump.

Cadence issues: to do simulations

At the university we have a workstation with Cadence and a general 90nm PDK.
You can open accounts on that machine and connect using VNC.
Danniel is also coordinating the dates for Cadence instructions on basic operation of Cadence (schematics, layout, simulation).

Students without Cadence background should be encouraged to participate but we need to know in advance.

We also have Matlab liscence. :

Review

Example of Mixed Signal Systems

Review of CMOS Transistor Basics

Converters

Analog signals
Voice, Data, sensors

$V(t)=0.20000$

$$
\text { ADC } \rightarrow \text { DSP } \rightarrow \text { DAC }
$$

It's a "Language" translator to do work. With fixed known boundary conditions Vinmax and Minmin, clock, maximum frequencies of through put,

The process burn power, produces inaccuracies, creates bad artifactsFolding, distortions - but allow communications to exists and to be stored.

In this course we will learn how converters operate and how those errors are generated. And more precisely why/when we can let the error exists.

1. Quick Review of Silicon based passives elements

2. Review of CMOS Transistor Basics

Si passive Elements Used in Mixed Signal- more in mismatch lect4

Silicon Resistors:

In Silicon R = Sheet resistance \times Number of square. ~ 6 ohm-1 Khom/square
$\boldsymbol{R}=\boldsymbol{R} \boldsymbol{s} \cdot$ squares $(1+\alpha \boldsymbol{T} / T o)$

Capacitors

$\mathrm{C}=\mathrm{Ca} \times$ Area $=\mathrm{Ca} \times \mathrm{W} \times \mathrm{L}$ (W and L are dimension of plates) $0.1-4 \mathrm{ff} / \mathrm{uu}$

CMOS Transistors

Transistors: (CMOS in this example)

4 terminal device, mostly 3 terminals are used, the $4^{\text {th }}$ is default connection

- not always.

CMOS works so nice because it is possible to build and repeat it: It is an efficient and dense element ($\sim 1.6 \mathrm{million} / \mathrm{mmsquare}$ in 45 nm tech.)

Transistor can change its "function" and become R, C, or a voltage controlled current source(VCCS). Applying mostly the control voltage to the gate to source voltage.

Key is to understand which control does what!
ids=f(Vgs,Vds,W,L,Vt,U,Cox)+noise

CMOS Transistor Basics

- General MOS structure
- W: channel width
- L: channel length
- G=Gate; D=Drain; S=Source, B=Bulk
- S \& D are doped p or n
- B is oppositely doped (n or p)

- doped p: excess of holes, positive charges;

Bulk

- doped n : excess of electrons, negative charges;
\rightarrow S/D with n doping, B with p doping $==$ NMOS device
\bullet S/D with p doping, B with n doping $==$ PMOS device
_A Baschirotto LV analog design 2011

CMOS Transistor Basics

In most case...nothing happen until you (VGS) pass the "Vt"

CMOS device characteristics

$\square \quad \mathrm{V}_{\mathrm{T} 0}=\mathrm{kT} / \mathrm{q}\left(\ln \left(\mathrm{N}_{\mathrm{D}}{ }^{*} \mathrm{~N}_{\mathrm{A}} / \mathrm{n}_{\mathrm{i}}^{2}\right)+\ln \left(\mathrm{N}_{\mathrm{A}} / \mathrm{n}_{\mathrm{i}}\right)-\mathrm{Q}_{\mathrm{b}} / \mathrm{C}_{\mathrm{ox}}-\mathrm{Q}_{\mathrm{ox}} / \mathrm{C}_{\mathrm{ox}}\right.$
$\square \quad \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{T} 0}+\gamma^{*} \mathrm{sqrt}\left(\mathrm{V}_{\mathrm{sb}}+2 \Phi_{\mathrm{F}}\right)-\mathrm{sqrt}\left(2 \Phi_{\mathrm{F}}\right)$
$\square \quad \mathrm{V}_{\mathrm{T}}$ depends to first order on doping and oxide thickness, both of which have tolerances.
\square The larger the area the more consistent the value, the less variation -> inverse proportional to root of gate area

CMOS Transistor Now and Future look

smaller and smaller $L<25 n m$: New transistors L is a " Figure of Merit" not really $25 n m$

Figure 1 - Planar and Tri-Gate FinFETs, courtsey of Intel

Source: Intel

Why FinFETs?

- FinFETs expected to continue transistor scaling to 7 nm
- FinFET fabrication compatible with CMOS process
- FinFETs address scaling challenges faced by bulk CMOS
- Better channel control with double gates \rightarrow reduced shortchannel effects
- Improved subthreshold slope
- Better Ion/loff
- Different styles
- Shorted-gate (SG)
- Independent-gate (IG)
- Asymmetric-workfunction SG (ASG)

Physical Structure of Nmos / Pmos transistor

Source: IEEE \& T.H. Lee.

How do we define W , L , Multiplier, Finger..

Source

Possible to add n channel floating..

Layout and cross section (Triple well)

Transistor Placement \rightarrow layout

a very important part of mixed signal is placement and layout of the elements.

now we have added errors: contacts resistance, metal routings and capacitance they can make difference at high frequency and at high currents

Dummy

Example: Metallization placement in Silicon

Large Signal Equations for Nmos/Pmos transistor

Linear Region - A"resistors"
Strong Inversion - A current source (v-c-c-s)
Moderate Inversion - "transition region"
Weak Inversion - A "bipolar device" (Exponential i/v)
Off (Accumulation) - Open Switch
Velocity saturation, and Breakdown regions ! -important in sub um logic devices..!

Example:
A "digital cell" transistors could switch through all those regions

Linear Region

Linear Region the drain current is mobility time electric field (surface)

$$
\begin{aligned}
& I_{D}=-W Q_{n}(y) \mu_{n} E \\
& \int_{0}^{L} I_{D} d y=I_{D} L=\int_{0}^{V_{D S}} \mu_{n} C_{o x} W\left[V_{G S}-V(y)-V_{t}\right] d V
\end{aligned}
$$

$I d s=\mu C o x(W / L)[(V g s-V t h) \cdot V d s-1 / 2 V d s \cdot V d s]$
Vgs-Vth $>$ Vds

In this region electron are attached to the surface creating a conductive surface R Which is Vds dependent (for small Vds)

Mobility: how a charge carriers responds to an induced electric field, the mobility in Silicon MOSFET is roughly $400 \mathrm{~cm} 2 / \mathrm{Vs}$

Saturation Region

$$
\text { IF Vgs }-V t h<V d s \quad \text { and } \quad \text { Vgs }-V t h>3 K T / q \sim 78 m V
$$

Then:

$$
I_{D}=\frac{\mu \cdot \operatorname{Cox}}{2} \cdot \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}=\frac{\beta}{2}\left(V_{G S}-V_{T}\right)^{2}
$$

$$
\beta=\mu \cdot C_{o x} \cdot \frac{W}{L}
$$

Or we can define Vgs $\mathbf{- V t h} \equiv \boldsymbol{V d s a t}$

Strong Inversion region
The inversion channel does not
extend all the way to the end
"pinched off"

Key: Keep Vdsat ~130mv
or more

Strong Inversion, large Vds, transistor do not respond to drain movement - Great place to make a current element or to make an amplification... or an ADC, DACs

$$
\begin{gathered}
V_{T H}=V_{T H 0}+\gamma \cdot\left[\sqrt{\mid-2 \cdot \Phi_{F}+V_{S B}}-\sqrt{2 \cdot \Phi_{F}}\right] \\
\gamma=\frac{\sqrt{2 \cdot q \cdot \varepsilon \cdot N_{A}}}{C_{O X}}
\end{gathered}
$$

Vt= Threshold voltage require to produce conducting channel at Drain Source.

In most design, to keep the transistor in saturation we always watch for Vdsat, and keep in mind that Vdsat is sould be lower than Vds.

Summary table

Weak Inversion (sub threshold) Region

$V d s>4 K T / q$

IFF Vgs $\mathbf{- V t h}<\mathbf{3 K T} / \mathbf{q} \sim \mathbf{7 8 m V}$

Then:

$$
I d s=I d o(W / L) e^{V g s /(n K T / q)}
$$

Key: when- \rightarrow Vgs~Vth
Can happen at any Vds (above $\sim 100 \mathrm{mv}$)
Transistor is Very large or has very small current !
Slope: ~70mV per decade of current
n (sometime k) is called kappa around 0.7 and represents the coupling of gate to source potential $\mathrm{n}=\operatorname{cox} /($ cox + cdepl $)$

Other Regions

Moderate Inversion Vgs-Vth ~30-50mV (same as Sub threshold) (transition place)
Off region: \quad Vgs~0 (leaky region) Idss, and Igate
Mobility saturation: Large Vgs-Vth $\sim \mathrm{V}$ supply or more.
Snap back: Very large Vds exceed supply, a bipolar action

Off region is interesting design parameter
it's a function of how big is Vth! And all leakages of all parasitic diodes

Source: IEEE \& T.H. Lee.

NMOS view

NMOS

Inverter example

Example: In class analysis..
An inverter will switch through all those regions
But in most Analog/Mixed signals most transistors will stay in one region or will switch from Off to one of those region.

CMOS: the small signal model

To convert the transistor to passive and active elements.

Mathematically :
Use "differentiation" to model it into another linear region.. CMOS , Bipolar any....type..
$\boldsymbol{g m} \equiv \partial \mathbf{I} \boldsymbol{d} \boldsymbol{s} / \partial V \boldsymbol{g} \boldsymbol{s}$
NMOS view
gds $\equiv \partial \mathbf{l d} s / \partial V d s$
$\boldsymbol{g m s b} \equiv \partial \mathrm{I} \boldsymbol{d} / \partial \mathbf{V} \boldsymbol{s} \boldsymbol{b}=\eta \bullet \boldsymbol{g m})$

Small Signal Transistor Parameters: Gm

Lets take the saturation region and assume the transistor Vgs-Vth does not change a lot. The current is set DC - but fluctuate as we 'slightly' (small signal) move the Gate voltage.

Its important because the "quality" of the transistor in term of amplifications and output impedance is measured. (ignoring gmsb)

$$
V g s-V t h<V d s
$$

$I d s=\mu \operatorname{Cox}(W / 2 L)(V g s-V t h)^{2}$
we want large gm but it cost: Squaring the Ids. W up and small Lhelps
$\boldsymbol{g m}=\partial \mathbf{l d s} / \partial \boldsymbol{V g s}=\mu \operatorname{Cox}(W / L)($ Vgs $-V t h)$

$\boldsymbol{g m}=\sqrt{2 \mu \boldsymbol{C o x}(W / L) / d s}$

$\Delta / d s=g m \bullet \Delta V g s$

W/L Constant

$$
\begin{aligned}
g_{m} & =\sqrt{2 \mu_{n} C_{o x} \frac{W}{L} I_{D}} \\
& =\frac{2 I_{D}}{V_{G S}-V_{T H}}
\end{aligned}
$$

Example: IDS Vs. VGS

This is also a measurement, same device.

The SLOPE of this plot is called Transconductance, and is a very important parameter for analog design (is the "gain" of the V-to-I amplifier).

Small Signal Transistor Parameters: Gds

Vgs -Vth $<$ Vds

At a fixed Vgs, Ids is not constant in term of Vds (replace sat current equation with- channel modulation $I d s=\mu \operatorname{Cox}(W / 2 L)(V g s-V t h)^{2}(1+\lambda V d s)$

$$
\boldsymbol{g d s}=\partial \mathbf{l d s} / \partial \mathbf{V d s} \equiv 1 / r o
$$

$g d s=\lambda \cdot \mu \operatorname{Cox}(W / 2 L)(V g s-V t h)^{2}=\lambda \cdot I d s$

- High-impedance
- Gain stages

$$
\begin{aligned}
g_{m} & =\mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T H}\right)\left(1+\lambda V_{D S}\right) . \\
& =\sqrt{\frac{2 \mu_{n} C_{o x}(W / L) I_{D}}{1+\lambda V_{D S}}}
\end{aligned}
$$

in Sat-Model for small signal (no capacitors-DC)

Model
in small signal model
Vgs, ids, ro, gm all are derivatives.. saturation

Source (S)

$$
g m \equiv \partial l d s / \partial V g s \quad i d s \equiv g m \bullet v g s
$$

$\boldsymbol{g d s} \equiv \partial \mathbf{l d} \boldsymbol{s} / \partial \mathbf{V} d \boldsymbol{s}$

$$
\mathbf{r} \boldsymbol{O}=1 /(\lambda \bullet i d s)
$$

Small Signal Transistor Parameters: Gmsb

gmsb (an additional gain path) Because Vt changes as a function of source to baulk:
(See Vth equation)
In many cases to avoid this gain path it is good to tie source to baulk!

$$
\begin{aligned}
& V_{t}=V_{t 0}+\gamma \cdot\left(\sqrt{2 \cdot \phi_{f}+V_{S B}}-\sqrt{2 \cdot \phi_{f}}\right) \\
& \frac{g m b}{g m}=\frac{\gamma}{2 \cdot \sqrt{2 \cdot \phi_{f}+V_{S B}}}=\chi
\end{aligned}
$$

$\boldsymbol{g m s b} \equiv \partial I d s / \partial \mathbf{V} \boldsymbol{s} \boldsymbol{b}=\eta \bullet g m)$
η
is In the range of 0.2 gm (every technology has an n)

B

Model - with_baulk

Convince yourself..

Use the small signal model derive the impedance of n channel transistors below.

Example : Transistor impedances:

MOS is a source device you move the drain nothing happen at the source but once you move the source the drain follow with gain! In Nmos source potential is lower than the drain And.. You can exchange source and drains- symmetrically.

Low Impedance

High Impedance

Source: IEEE \& T.H. Lee.
Gate impedance in thin gates is not infinite
\lg is becoming significant for L below $\sim 65 n m$. (thin oxide) conventional CMOS

How gm behaves with at different regions

Gain => gm x ro

Another look is relative gm defined as gm/lds (for low I design) But also the "gain" is gm ro $=\sim$ gm/lds

Capacitor of CMOS

capacitors	Saturation	Linear	Off	
C gate to S	$2 / 3 \mathrm{Cox}+\mathrm{Cov}$	$1 / 2 \mathrm{Cox}+\mathrm{Cov}$	Cov	
C gate to D	Cov	$1 / 2 \mathrm{Cox}+\mathrm{Cov}$	Cov	
C gate to B	0	0	$\mathrm{Cox} / / \mathrm{Ccb}+.$.	
C drain to B C source B	Cj (diode) CJ	Cj Cj	Cj CJ	Voltage dependance

Basic MOS Transistor operation

Small Signal Equivalent Circuit -Capacitances

CMOS MODEL

CMOS Model - never forget the Parasitic Bipolar/diodes !

$$
I_{G R}=A \cdot \frac{Q \cdot n_{i} \cdot x_{j}}{2 \cdot \tau_{0}}
$$

- A : area of the junction
- X_{j} : depletion region width
- τ_{0} : mean lifetime for minority carriers

- $I_{G R}$ doubles for an increase of $\approx 10 \mathrm{~K}$
- At room temperature $\mathrm{I}_{\mathrm{GR}} / \mathrm{A}=10^{-15} \mathrm{~A} / \mu \mathrm{m}^{2}$

N- Sub

Summary

Saturation

$$
I d s=\mu \operatorname{Cox}(W / 2 L)(V g s-V t h)^{2}(1+\lambda V d s)
$$

Linear
$I d s=\mu \operatorname{Cox}(W / L)[(V g s-V t h) \cdot V d s-1 / 2 V d s \cdot V d s]$

S $\quad \mathrm{R}=($ function of $\mathrm{vgs}, \mathrm{vds}$)

Sub Threshold
$I d s=I d o(W / L) e^{V g s /(n K T / q)}$
"Rule of thumb" : 70mv/dedade of I

Now add capacitance according to Mode of operation on table provided

Assignment 1-optional

1. What is w / l of a donut shape transistor?
2. Can you derive it?
3. What is it good for ?

Assignment 2

4. If at $t=0$ the switch is closed then at $t=1 \mathrm{~ns}$ it open what is the final voltage at the three sources ($\mathrm{S} 1,2,3$) ?
switch Close to open

END lect. 01

added slides for lect. 01

Clock-PLL Based Digitizing Mixed signal example

Example of Mixed Signal systems

$$
I(t)=0-0.2 n A \quad v(t)=0-30 \mathrm{mV} \quad v(t)=v c c(\text { or } 0)
$$

Example: ADC / DAC LOCATION IN WiFI system...

