
Logo: Englische Version

8	 Grundlagen

IME Report 01/2009: How to use the FFT for signal and noise
simulations and measurements

Hanspeter Schmid∗

c© FHNW/IME, May 13, 2009

Abstract — This short text describes how information on signal and noise levels can be extracted from an
FFT when windowing is used. The document does not cover confidence intervals in spectral estimation.
The target group of readers are engineers who want to simulate (or measure) signal-to-noise ratios using
FFTs or periodograms (pwelch in Matlab) or on a captured signal, e.g., a sigma-delta bitstream.

1 Introduction

Simulating (or measuring) signals and noise with an FFT is not trivial, because signals and noise do not
behave in the same way when analyzed with an FFT.

The main reason for this is easy to explain. Let us do the following experiment: we use a sine signal
of frequency 100 Hz and amplitude

√
2 and a white noise source with power spectral density 10−8 over

the whole frequrency range covered by the FFT.1 What happens if the simulation2 time is increased by a
factor of 100, but the sampling time is left the same?

The answer directly follows from Parceval’s Theorem that states: the total signal power in the time
domain and in the frequency domain is the same. If we just increase the simulation time, then the signal
power does not change, so the amplitude of the signal stays the same. The noise power also does not
change, but it is white noise, and occurs in all frequency bins of the FFT. We now have 100 times as
many frequency bins as before, so we have to expect that the signal power within one frequency bin is
diminished by a factor of 100, or 20 dB. Figure 1 shows these two simulations next to each other. The
20 dB difference is well visible.

To see this in simulation is not trivial, for two reasons: first, the FFT itself also introduces a factor N ,
the length of the FFT, and second, as can be seen in the left plot of Fig. 1, the signal may obfuscate the
noise because it is smeared out. The latter can be fought with windowing.

2 FFT and windowing

Windowing means that the time series to be transfored is multiplied by a window function before the
FFT. So instead of x[i], we transform x[i]w[i] for some window function which promises to produce a
clearer spectral representation of the signal.

∗hanspeter.schmid@fhnw.ch, Institute of Microelectronics, University of Applied Sciences NW Switzerland.
1In Matlab Simulink, this would be a “Sine Wave” block with amplitude

√
2 and frequency 2π100 rad/sec; and a “Band

Limited White Noise” block with noise power 10−8/2. The reason for the ·/2 is that we want to have a one-sided power
spectral density (PSD) of 10−8, but the Simulink block “Band Limited White Noise” assumes a two-sided PSD.

2All of this is also valid for measurements

2 2 FFT AND WINDOWING

Figure 1: The same system with two different simulation times.

Window CG NG
Rectangular 1.0000 1.0000
Hamming 0.5400 0.3974
Hanning 0.5000 0.3750
Bartlett 0.5000 0.3333
Blackman-Harris 0.3587 0.2580
Flat Top 0.2156 0.1752

Table 1: Correction factors for different windows.

The function of the window can be thought of as follows: every single frequency bin of the transformed
signal is a linear combination of N time samples. If the signal to be transformed is a sine function, then,
ideally, all these N samples add up in one bin and cancel out in all other bins, such that the sine will
result as a single peak in the spectrum. For x[i]w[i], the average value in the bin where the time signals
add up will be multiplied by

CG =
1
N

N−1∑
i=0

w[i] (1)

compared to what happens with a rectangular window (w[i] = 1 for all i). CG is the so-called coherent
gain of the window. If the signal is white noise, however, then the N time samples are uncorrelated. This
means that in every bin, the noise power of N input values will add up, and the average value in the bin
will be

NG =
1
N

N−1∑
i=0

w[i]2 (2)

compared to what happens when a rectangular window is used. We call NG the noise gain. For a
rectangular window, CG = NG = 1; the correction factors for a few common windows are listed in
Table 1.

c© 2009 FHNW/IME

2.1 Normalization for reading signal RMS values 3

2.1 Normalization for reading signal RMS values

If we want to be able to read the RMS value of deterministic signals from an FFT plot, we have to divide
the FFT by N times the coherent gain and then calculate the power spectral density. So for an input
signal x, we get for the one-sided power spectral density:

Y [i] =
FFT {x[i]w[i]}

N · CG
, (3)

Pyy[0] = Y [0] · Y [0]∗ and Pyy[i] = 2 · Y [i] · Y [i]∗ for i > 0. (4)

Using this scaling, we can read the RMS-value of a deterministic signal directly out of the plot. The 0 dB
visible in Fig. 1 correspond to 1 Vrms, which was the value used in the simulation.

How can we now read the power spectral density of the noise signal from the plot? When white noise
with the power spectral density x2

n is fed into the FFT, then the output will be the noise integrated over a
frequency range

fbin =
1

Tsim
=

1
NTsamp

, (5)

(where Tsim is the simulation time and Tsamp is the sampling period) and then multiplied by the noise
gain. Since we also divided the result of the FFT by CG, what we plot actually is

Pyy[i] = x2
n ·

NG · fbin

CG2 . (6)

Therefore the power spectral density calculated from the value in the FFT is:

x2
n =

Pyy[i]CG2

NGfbin
, (7)

or, in other words, if we want to plot a known power spectral density into the same plot, we need to scale
it by the factor

sn =
NGfbin

CG2 . (8)

The red lines in Figure 1 have been obtained like this. For a rectangular window, the calculation is trivial:
since CG = NG = 1 we get sn = fbin.

2.2 Normalization for reading noise values

Sometimes reading the noise level directly off a plot is more important than being able to read a signal.
In this case, the proper way to normalize the FFT is

Y [i] =
1
N

FFT {x[i]w[i]} , (9)

Pyy[0] =
Y [0] · Y [0]∗

NGfbin
and Pyy[i] =

2 · Y [i] · Y [i]∗

NGfbin
for i > 0. (10)

If we then know that the power at index i comes from a deterministic signal, the power of that signal is

Psig = Pyy[i] ·
NGfbin

CG2 . (11)

c© 2009 FHNW/IME

4 5 BEHAVIOUR FOR FLICKER NOISE

3 Window functions

Much has been written about window functions, and using the best window function for a certain appli-
cation requires a lot of specialized knowledge. Without going into the detail, I recommend to use the
Hanning window for most applications, except when very low noise has to be observed in the presence
of a signal, then the Blackman-Harris window gives better results.

Figures 2 and 3 show this. It can be seen in Fig. 3 that the Hanning window concentrates the signal
in a narrower peak, but below some value, the signal is smeared out into so-called side lobes. The
Blackman-Harris window creates a wider peak to start with, but has much lower side lobes.

Fig. 2 shows well that using windows is not for free, compared to the Rectangular window, they raise
the visible noise floor. In Fig. 2, the rectangular window plots the white noise at −70 dB, the Hanning
window at−68.24 dB, and the Blackman-Harris window at−66.98 dB. This means that the latter is least
suitable when one wants to see small distortion peaks in the noise floor: distortion peaks are deterministic
signals and will not change their magnitude in Pyy if we apply a different window.

4 Reading signal RMS values out of a Matlab pwelch periodogram

Matlab’s pwelch function (e.g., pwelch(y,2ˆ13,2ˆ12,[],Fs,’onesided’)) draws a power spec-
tral density by using a Hamming window and calculating a periodogram. The Matlab documentation
describes how to set its parameters, but, unfortunately, not how to read values off such a periodogram.

pwelch’s output is normalized for reading noise values. Therefore, if one wishes to read the magnitude
of a deterministic signal, (11) applies.

So, for example, if one reads the dB-values xi = −26.21, −61.62, −46.19 off a periodogram, then the
RMS values can be computed as follows:

[Pxx,f]=pwelch(y,2ˆ13,2ˆ12,[],Fs,’onesided’);
fbin = f(2);
W=hamming(1024);
CG=sum(W)/1024;
NG=sum(W.ˆ2)/1024;

ff = NG * fbin / CGˆ2

Xrms = sqrt(10.ˆ([-26.21 -61.62 -46.19]/10) * ff)

5 Behaviour for flicker noise

In the explanation above, we argued that white noise and deterministic signals are treated differently
when evaluated with an FFT, because the time samples of a deterministic signal are correlated, which the
noise samples are not. For flicker noise, the time samples are not independent, but have some correlation.
We have not been able to treat it mathematically yet, but simulations as in Fig. 4 indicate that flicker noise
behaves like white noise in an FFT analysis. This hypothesis is not well tested, though.

c© 2009 FHNW/IME

5

Figure 2: Rectangular, Hanning and Blackman-Harris Window applied to a signal of magnitude
√

2 and
white noise with a one-sided power spectral density of 10−8.

c© 2009 FHNW/IME

6 5 BEHAVIOUR FOR FLICKER NOISE

Figure 3: Rectangular, Hanning and Blackman-Harris Window applied to a signal of magnitude
√

2 and
white noise with a one-sided power spectral density of 10−14.

c© 2009 FHNW/IME

7

Figure 4: Average of 100 simulations with flicker noise proportional to 1/f .

Figure 5: Simulink model used for this document.

c© 2009 FHNW/IME

8 6 SAMPLE MATLAB CODE

6 Sample Matlab code

The plots above were made using the Simulink model shown in Fig. 5 with the following code:

clear
%% Set values of noises and signals
V2n = (1e-4)ˆ2;
ASig = sqrt(2)*1.0;
FSig = 100;
TSamp = 1e-4;
TStop = 0.1;
NSim = 32;
rSeed=1454;
sim(’sig_noise’)

%% Evaluate Fourier Transform and plot
N=max(size(vout));
W = hanning(N); WN = ’Hanning Window’;
W = blackmanharris(N); WN = ’Blackman-Harris Window’;
W = ones(N,1); WN = ’Rectangular Window’;
CG=sum(W)/N; % Coherent Gain of the window
NG=sum(W.ˆ2)/N; % Noise Gain of the window
fbin=1/TStop; % Frequency bin width
NF=fbin*NG/CGˆ2; % Factor to be used when plotting an ideal PSD

% into the same plot

%Calculate one-sided power spectral density
Y=vout.*W; % Windowing
YF = abs(fft(Y))/CG/N; % Transformed signal divided by coherent gain
f = (0:(N-1)/2)/TStop; % Frequency Axis of half of the FFT
Pyy = 2*YF.ˆ2; % One-Sided Power Spectral Density
Pyy(1)=Pyy(1)/2; % The DC component should not be doubled

for k=1:NSim-1,
k
rSeed = 169+13*k;
sim(’sig_noise’)
Y=vout.*W; % Windowing
YF = abs(fft(Y))/CG/N; % Transformed signal divided by coherent gain
Py = 2*YF.ˆ2; % One-Sided Power Spectral Density
Py(1)=Pyy(1)/2; % The DC component should not be doubled
Pyy = Pyy+Py;

end

Pyy=Pyy/NSim;
PyydB=10*log10(Pyy(1:(N-1)/2+1)); % in dB

semilogx(f,PyydB)
titlestring=sprintf(’Tsim=%1.0e, Ts=%1.0e, %s’,TStop,TSamp,WN);
title(titlestring)
xlabel(’frequency (Hz)’)
ylabel(’PSD (dB re 1 Vrms)’)
axis([1/TStop 1/2/TSamp -80 10])
grid
hold on
plot(f,10*log10(NF*ones(size(f))*V2n),’r’,’LineWidth’,2)
hold off

c© 2009 FHNW/IME

	1 Introduction
	2 FFT and windowing
	2.1 Normalization for reading signal RMS values
	2.2 Normalization for reading noise values

	3 Window functions
	4 Reading signal RMS values out of a Matlab pwelch periodogram
	5 Behaviour for flicker noise
	6 Sample Matlab code

